已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較的大小,并說明理由.      
(Ⅰ);(Ⅱ)略;(Ⅲ)<.

試題分析:(Ⅰ)利用導(dǎo)數(shù)求解單調(diào)性,把恒成立轉(zhuǎn)化為最值;(Ⅱ)可用數(shù)學(xué)歸納法來證明;(Ⅲ)通過放縮法來解決的大小比較問題.
試題解析:(Ⅰ) ∵f(1)="a-b=0" ∴a=b


要使函數(shù)在其定義域上為單調(diào)函數(shù),則在定義域(0,+∞)內(nèi)恒大于等于0或恒小于等于0,
當(dāng)a=0時(shí),在(0,+∞)內(nèi)恒成立;
當(dāng)a>0時(shí), 恒成立,則
當(dāng)a<0時(shí), 恒成立
∴a的取值范圍是:       5分
(Ⅱ)   ∴a=1   則:
于是
用數(shù)學(xué)歸納法證明如下:
當(dāng)n=1時(shí),,不等式成立;
假設(shè)當(dāng)n=k時(shí),不等式成立,即也成立,
當(dāng)n=k+1時(shí),
所以當(dāng)n=k+1時(shí)不等式成立,
綜上得對(duì)所有時(shí),都有         10分
(Ⅲ)由(2)得

于是
所以 ,
累稱得:
所以    13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:++…+= (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知有如下等式:當(dāng)時(shí),試猜想的值,并用數(shù)學(xué)歸納法給予證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}滿足a1=2,an+1 (n∈N*),則a3=________,a1·a2·a3·…·a2014=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項(xiàng)公式bn;
(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Snlogabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證時(shí),左邊應(yīng)取的項(xiàng)是
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)對(duì)任意實(shí)數(shù)x 、y都有
(1)求的值;
(2)若,求、的值;
(3)在(2)的條件下,猜想的表達(dá)式,并用數(shù)學(xué)歸納法加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明等式,從“k到k+1”左端需增乘的代數(shù)式為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在用數(shù)學(xué)歸納法證明凸n邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證(  )
A.n=1時(shí)成立B.n=2時(shí)成立
C.n=3時(shí)成立D.n=4時(shí)成立

查看答案和解析>>

同步練習(xí)冊(cè)答案