【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設(shè)一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進價(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進價)
【答案】(1)
(2)第5周的每件銷售利潤最大
【解析】
(1)直接由一次函數(shù)和常數(shù)函數(shù)關(guān)系列出價格(元)與周次之間的函數(shù)關(guān)系式;
(2)分段由得到銷售此服裝的利潤與周次的關(guān)系式,然后利用二次函數(shù)和一次函數(shù)的單調(diào)性分段求最大值,最后取三段中最大值的最大者.
解:(1)當(dāng)時,;
當(dāng)時,;
當(dāng)時,,
綜上所述:;
(2)由已知可得:,
當(dāng)時,有時,;
當(dāng)時,有或時,;
當(dāng)時,有時,,
綜上:當(dāng)時,,
答:第5周的每件銷售利潤最大
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機數(shù):
據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),曲線在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為-12.
(1)求函數(shù)的解析式;
(2)用列表法求函數(shù)在上的單調(diào)增區(qū)間、極值、最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=,
(1)求實數(shù)m的值
(2)作出的圖象,并指出當(dāng)方程只有一解,a的取值范圍(不必寫過程)
(3)若函數(shù)在區(qū)間 上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線y2=x有一個相同的焦點,且該橢圓的離心率為.
(1)求橢圓的標(biāo)準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是雙曲線的左頂點、右焦點,過的直線與的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=的定義域為集合A,g(x)=的定義域為集合B,C={xR|x<a或x>a+1}
(1)求集合A,(CA)B
(2)若AC=R,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽測試的學(xué)生中隨機抽出60名學(xué)生,將其成績(百分制)(均為整數(shù))分成六段,…后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,從圖中估計總體的眾數(shù)是多少分?中位數(shù)是多少分?
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com