【題目】已知函數(shù)
(1)若討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)與的圖象有且僅有一個(gè)交點(diǎn),求的值(其中表示不超過(guò)的最大整數(shù),如.
參考數(shù)據(jù):
【答案】(1)當(dāng)時(shí), 在單調(diào)遞減;當(dāng)時(shí),在單調(diào)遞減;在單調(diào)遞增. (2)2
【解析】
(1)對(duì)進(jìn)行求導(dǎo),討論的取值范圍,令或,解不等式即可求解.
(2)兩函數(shù)有且僅有一個(gè)交點(diǎn) ,則方程
即方程在只有一個(gè)根, 令,研究
的單調(diào)性,求出的零點(diǎn),然后根據(jù)零點(diǎn)存在性定理判斷零點(diǎn)所在的區(qū)間即可.
解:(1)
對(duì)于函數(shù)
當(dāng)時(shí),則在單調(diào)遞減;
當(dāng)時(shí),令,則,解得
在單調(diào)遞減;
令,解得,所以在單調(diào)遞增.
(2)且兩函數(shù)有且僅有一個(gè)交點(diǎn) ,則方程
即方程在只有一個(gè)根
令,則
令,則
在單調(diào)遞減,在上單調(diào)遞增,故
注意到在無(wú)零點(diǎn),在僅有一個(gè)變號(hào)的零點(diǎn)
在 單調(diào)遞減,在單調(diào)遞增,注意到
根據(jù)題意為 的唯一零點(diǎn)即
消去,得:
令,可知函數(shù)在上單調(diào)遞增
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)M是圓上的動(dòng)點(diǎn),O是原點(diǎn),N是射線(xiàn)OM上的點(diǎn),若,求點(diǎn)N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若存在滿(mǎn)足,證明成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:l(a>b>0)經(jīng)過(guò)點(diǎn)(,1),且離心率e.
(1)求橢圓C的方程;
(2)若直線(xiàn)l與橢圓C相交于AB兩點(diǎn),且滿(mǎn)足∠AOB=90°(O為坐標(biāo)原點(diǎn)),求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè)x≥1,y≥1,證明x+yxy;
(Ⅱ)1≤a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一張形狀為等邊三角形的紙片,邊長(zhǎng)為8,將它對(duì)折,使頂點(diǎn)落在邊上,當(dāng)點(diǎn)沿著從點(diǎn)到點(diǎn)移動(dòng)時(shí),求折痕長(zhǎng)的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),為其焦點(diǎn),為其準(zhǔn)線(xiàn),過(guò)任作一條直線(xiàn)交拋物線(xiàn)于兩點(diǎn),、分別為、在上的射影,為的中點(diǎn),給出下列命題:
(1);(2);(3);
(4)與的交點(diǎn)的軸上;(5)與交于原點(diǎn).
其中真命題的序號(hào)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,比賽要求雙方下滿(mǎn)五盤(pán)棋,開(kāi)始時(shí)甲每盤(pán)棋贏的概率為,由于心態(tài)不穩(wěn),甲一旦輸一盤(pán)棋,他隨后每盤(pán)棋贏的概率就變?yōu)?/span>.假設(shè)比賽沒(méi)有和棋,且已知前兩盤(pán)棋都是甲贏.
(Ⅰ)求第四盤(pán)棋甲贏的概率;
(Ⅱ)求比賽結(jié)束時(shí),甲恰好贏三盤(pán)棋的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,ABCD,AB1⊥BC,且AA1=AB.求證:
(1)AB平面D1DCC1;
(2)AB1⊥平面A1BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com