在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若sinA=
3
sinC,B=30°,b=2,則△ABC的面積是( 。
A、2
3
B、2
C、3
D、
3
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:由正弦定理將sinA=
3
sinC化為a=
3
c,由余弦定理和條件求出a、c的值,代入三角形的銘記公式求解.
解答: 解:由正弦定理,sinA=
3
sinC化為a=
3
c,
由余弦定理得,b2=a2+c2-2accosB,
即4=3c2+c2-2×
3
c2×
3
2
,
化簡(jiǎn)得,c=2,a=2
3
,
△ABC的面積S△ABC=
1
2
acsinB
=
1
2
×2×2
3
×
1
2
=
3

故選:D.
點(diǎn)評(píng):本題考查正弦、余弦定理,以及三角形的面積公式,熟練掌握公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+
π
3
)的相鄰兩條對(duì)稱(chēng)軸的距離為π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(0,
3
2
),動(dòng)圓P經(jīng)過(guò)點(diǎn)F且和直線y=-
3
2
相切,記動(dòng)圓的圓心P的軌跡為曲線W.
(1)求曲線W的方程;
(2)四邊形ABCD是等腰梯形,A,B在直線y=1上,C,D在x軸上,四邊形ABCD的三邊BC,CD,DA分別與曲線W切于P,Q,R,求等腰梯形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,為偶函數(shù)的是( 。
A、f(x)=sin(
2015π
2
+x)
B、f(x)=cos(
2015π
2
+x)
C、f(x)=tan(
2015π
2
+x)
D、f(x)=sin(
2014π
2
+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地決定修建一條長(zhǎng)為AB的跨河大橋,如圖,A、B兩點(diǎn)在河的兩岸,一測(cè)量者在A的同側(cè),在所在的河岸邊選定一點(diǎn)C,測(cè)得AC的距離為am,∠ACB=45°,∠CAB=105°,則A、B兩點(diǎn)的距離為(  )
A、
2
am
B、
3
am
C、
2
2
am
D、
2
4
am

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)F(x)=(x2-ax+1)ex,直線l:y=2x+b,其中a,b∈R.
(1)若曲線y=F(x)在點(diǎn)(0,F(xiàn)(0))處的切線為l,求a,b的值;
(2)求函數(shù)F(x)的單調(diào)遞增區(qū)間;
(3)若函數(shù)F(x)在區(qū)間(0,2)上不單調(diào),求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=20,∠BAC=45°,∠ABC=75°,則AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an+1=2an+1 (n=1,2…),則( 。
A、{an}為等比數(shù)列
B、{an-1}為等比數(shù)列
C、{an+1}為等比數(shù)列
D、{2an+1}為等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案