【題目】網(wǎng)絡(luò)游戲要實現(xiàn)可持續(xù)發(fā)展,必須要發(fā)展綠色網(wǎng)游.為此,國家文化部將從內(nèi)容上對網(wǎng)游作出強制規(guī)定,國家信息產(chǎn)業(yè)部還將從技術(shù)上加強對網(wǎng)游的強制限制,開發(fā)限制網(wǎng)癮的疲勞系統(tǒng),現(xiàn)已開發(fā)的“游戲防沉迷系統(tǒng)”規(guī)則如下:

小時以內(nèi)(含小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗值(單位:)與游戲時間(小時)滿足關(guān)系式:為常數(shù));

小時到小時(含小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗值為(即累積經(jīng)驗值不變);

③超過小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關(guān)系,比例系數(shù)為.

1)當時,寫出累積經(jīng)驗值與游戲時間的函數(shù)關(guān)系式,并求出游戲小時的累積經(jīng)驗值;

2)定義“玩家愉悅指數(shù)”為累積經(jīng)驗值與游戲時間的比值,記作;若,開發(fā)部門希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于,求實數(shù)的取值范圍.

【答案】1,游戲小時的累積經(jīng)驗值為;(2.

【解析】

1)分、三種情況得出關(guān)于的函數(shù)解析式,即可得出函數(shù)的解析式,結(jié)合函數(shù)解析式可計算出游戲小時的累積經(jīng)驗值的值;

2)由題意得出,可得出,構(gòu)造函數(shù),求出該函數(shù)在上的最小值,可得出關(guān)于的不等式,解出即可.

1,當時,,當時,

時,

時,.

所以.

時,,所以游戲小時的累積經(jīng)驗值為;

2)由題意,當,,

整理得恒成立,令,

函數(shù)單調(diào)遞減,在單調(diào)遞增,

時,,解得.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.已知2018年為戊戌年,那么到改革開放一百年,即2078年為__________年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知函數(shù),試判斷函數(shù)的單調(diào)性,并說明理由;

2)已知函數(shù).

i)判斷的奇偶性,并說明理由;

ii)求證:對于任意的x ,yR,且x≠±1 y≠±1,xy≠1都有.

3)由⑵可知滿足①式的函數(shù)是存在的,如.問:滿足①的函數(shù)是否存在無窮多個?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)R).

1)求函數(shù)R上的最小值;

2)若不等式上恒成立,求的取值范圍;

3)若方程上有四個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,B,C分別是海岸線上的兩個城市兩城市間由筆直的海濱公路相連B,C之間的距離為100km,海島A在城市B的正東方50從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C已知船速為25km/h,車速為75km/h.

(1)試建立由A經(jīng)PC所用時間與的函數(shù)解析式

(2)試確定登陸點P的位置,使所用時間最少,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,數(shù)列的前項和為,滿足,,且.若存在,使得成立,則實數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,平面平面.

(Ⅰ)證明:平面

(Ⅱ)若底面為矩形,,的中點,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

中,角A、B、C的對邊分別為abc,面積為S,已知

)求證:成等差數(shù)列;

)若.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是正三角形,四邊形是正方形.

(Ⅰ)求證:;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案