1.命題“?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx≤m”的否定為?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx>m.

分析 根據(jù)已知中的原命題,結(jié)合特稱命題的否定方法,可得答案.

解答 解:命題“?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx≤m”的否定為命題“?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx>m”,
故答案為:?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx>m

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是特稱命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.閱讀下邊的程序框圖,運(yùn)行相應(yīng)的程序,則輸出v的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x>0,y>0,且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)F1,F(xiàn)2為橢圓 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn),經(jīng)過F1的直線交橢圓C于A,B兩點(diǎn),若△F2AB是面積為$4\sqrt{3}$的等邊三角形,則橢圓C的方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1009=1,則S2017( 。
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:函數(shù)f(x)=lg(x2-2x+a)的定義域?yàn)镽,命題q:對(duì)于x∈[1,3],不等式ax2-ax-6+a<0恒成立,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x5+ax3+bx-8,且f(-2017)=10,則f(2017)等于( 。
A.-26B.-18C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$且滿足對(duì)任意的實(shí)數(shù)x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$y=\sqrt{1-x}$的定義域是( 。
A.{x|0≤x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案