【題目】已知函數(shù),其中a >2.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若對于任意的,恒有,求a的取值范圍.
【答案】(Ⅰ)見解析(Ⅱ)(2,5]
【解析】分析:(Ⅰ)確定函數(shù)的定義域,求導數(shù)后由可得增區(qū)間,由可得減區(qū)間.(Ⅱ)原不等式可化為令,則得在上單調(diào)遞增,故在上恒成立,解不等式可得所求范圍.
詳解:(I)由題意得函數(shù)f(x)的定義域為,
∵,
∴,
令,得或,
∵ ,
∴.
由,解得0<x<1或x>a-1,
由,解得1<x<a-1 .
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為(1,a-1).
(II)設,則不等式等價于·
即
令,
則函數(shù)g(x)在x∈(0,+∞)上為增函數(shù).
∴/span>在上恒成立,
而,當且僅當,即時等號成立.
∴,
∵ >2 ,
∴,
解得.
∴實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線:(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設點的直角坐標為,直線與曲線的交點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,點的坐標為,點在拋物線上,且滿足,(為坐標原點).
(1)求拋物線的方程;
(2)過點作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點,與拋物線交于兩點,線段的中點分別為,求證:直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是奇函數(shù),求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,是圓上一動點,點在線段上,點在半徑上,且滿足.
(1)當在圓上運動時,求點的軌跡的方程;
(2)設過點的直線與軌跡交于點(不在軸上),垂直于的直線交于點,與軸交于點,若,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個獎杯的三視圖,試根據(jù)獎杯的三視圖計算它的表面積和體積(可用計算工具,尺寸如圖,單位:cm,π取3.14,結(jié)果取整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com