【題目】如圖,矩形中,,的中點,現(xiàn)將折起,使得平面及平面都與平面垂直.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】分析:(1)分別取中點,分別連接可證明平面平面,可得,又,∴四邊形為平行四邊形,,從而可得平面;(2)為原點,,正半軸,建立空間直角坐標系可得平面的一個法向量,利用向量垂直數(shù)量積為零列方程組求出平面的法向量由空間向量夾角余弦公式可得結(jié)果.

詳解(1)分別取中點,分別連接,則

∵平面及平面都與平面垂直,

平面平面

由線面垂直性質(zhì)定理知,又,

∴四邊形為平行四邊形,

平面,∴平面.

(2)如圖,以為原點,,正半軸,建立空間直角坐標系,則.

平面的一個法向量,設(shè)平面的法向量,

,取

注意到此二面角為鈍角,

故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,拋物線與橢圓在第一線象限的交點為

1)求曲線、的方程;

2)在拋物線上任取一點,在點處作拋物線的切線,若橢圓上存在兩點關(guān)于直線對稱,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(不與A,C重合),過點D作DE∥BC交AB于點E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.

(1)若異面直線BE與AC垂直,確定圖1中點D的位置;

(2)證明:無論點D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列說法是否正確,若錯誤,請舉出反例

1)互斥的事件一定是對立事件,對立事件不一定是互斥事件;

2)互斥的事件不一定是對立事件,對立事件一定是互斥事件;

3)事件與事件B中至少有一個發(fā)生的概率一定比B中恰有一個發(fā)生的概率大;

4)事件與事件B同時發(fā)生的概率一定比B中恰有一個發(fā)生的概率小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的定義域為,且存在實常數(shù),使得對于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有“性質(zhì).

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值的集合,若不具有“性質(zhì)”,請說明理由;

2)已知函數(shù)具有“性質(zhì)”,且當(dāng)時,,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時,,若函數(shù)的圖像與直線2017個公共點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)).

(Ⅰ)當(dāng)時,求不等式的解集;

(Ⅱ)求證:,并求等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標準是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a >2.

(I)討論函數(shù)f(x)的單調(diào)性;

(II)若對于任意的,恒有,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)上單調(diào)遞增,又函數(shù).

(1)求實數(shù)的值,并說明函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案