【題目】某廠(chǎng)生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠(chǎng)生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠(chǎng)在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
【答案】(1);(2).
【解析】
(1)利用利潤(rùn)總售價(jià)總成本,根據(jù)的范圍分段考慮關(guān)于的解析式,注意每一段函數(shù)對(duì)應(yīng)的定義域;
(2)求解中的每段函數(shù)的最大值,然后兩段函數(shù)的最大值作比較得到較大值,即為最大利潤(rùn).
(1)當(dāng)時(shí),,
當(dāng)時(shí),,
所以;
(2)當(dāng)時(shí),,
所以當(dāng)時(shí),(萬(wàn)元);
當(dāng)時(shí),,
取等號(hào)時(shí)即,所以(萬(wàn)元)(萬(wàn)元),
所以年產(chǎn)量為千件時(shí),所獲利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,,,.
(1)求證:面;
(2)在線(xiàn)段上求一點(diǎn),使銳二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在黃陵中學(xué)舉行的數(shù)學(xué)知識(shí)競(jìng)賽中,將高二兩個(gè)班參賽的學(xué)生成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率;
(2)求這兩個(gè)班參賽的學(xué)生人數(shù)是多少?
(3)這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù)應(yīng)落在第幾小組內(nèi)?(不必說(shuō)明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下表為函數(shù)部分自変量取值及其對(duì)應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);
(1)判斷函數(shù)的奇偶性,并證明;
(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點(diǎn),并說(shuō)明理由;
(3)判斷的正負(fù),并證明函數(shù)在上是單調(diào)遞減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.不過(guò)原點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),設(shè)直線(xiàn),直線(xiàn),直線(xiàn)的斜率分別為,且成等比數(shù)列.
(1)求的值;
(2)若點(diǎn)在橢圓上,滿(mǎn)足的直線(xiàn)是否存在?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),對(duì)于任意正實(shí)數(shù),不等式恒成立,試判斷實(shí)數(shù)的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通7座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車(chē)輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車(chē)的投保情況,隨機(jī)抽取了80輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
以這80輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(1)某家庭有一輛該品牌車(chē)且車(chē)齡剛滿(mǎn)三年,記為該車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;
(2)某銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車(chē)輛記為事故車(chē).
①若該銷(xiāo)售商購(gòu)進(jìn)三輛車(chē)(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求這三輛車(chē)中至少有2輛事故車(chē)的概率;
②假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損4000元,一輛非事故車(chē)盈利8000元.若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求其獲得利潤(rùn)的期望值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com