【題目】已知橢圓的一個焦點(diǎn)為,離心率為.不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)直線,直線,直線的斜率分別為,且成等比數(shù)列.
(1)求的值;
(2)若點(diǎn)在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1);(2)見解析.
【解析】分析:(1)由離心率公式及基本量運(yùn)算可得,從而得方程;設(shè)直線的方程為,由,得,由已知,利用韋達(dá)定理帶入可得;
(2)假設(shè)存在直線滿足題設(shè)條件,且設(shè),由,得,代入橢圓方程得:,整理得,由韋達(dá)定理帶入可得,可知直線不存在.
詳解:(1)由已知得,則,
故橢圓的方程為;
設(shè)直線的方程為,
由,得,
則,
由已知,
則,即,
所以;
(2)假設(shè)存在直線滿足題設(shè)條件,且設(shè),
由,得,
代入橢圓方程得:,
即,
則,即,
則,
所以,
化簡得:,而,則,
此時,點(diǎn)中有一點(diǎn)在橢圓的上頂點(diǎn)(或下頂點(diǎn)處),與成等比數(shù)列相矛盾,故這樣的直線不存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】密碼學(xué)是一種密寫技術(shù),即把信息寫成代碼的技術(shù),將信息轉(zhuǎn)換成保密語言的過程叫編碼,有保密形式語言道出原始信息的過程稱作譯碼.凱撒(公元前100-前44年)曾使用過一種密碼系統(tǒng),現(xiàn)稱為凱撒暗碼,按照這種系統(tǒng)的規(guī)則,原始信息的字母都用另一字母代替,后者在標(biāo)準(zhǔn)字母表中的位置比前者靠后三位(即暗碼原碼后移3個位置).如:標(biāo)準(zhǔn)字母表:,凱撒暗碼表:,這樣就將信息“JuliusCaesar”編碼為“MxolxvFdhvdu”當(dāng)你知道所得到的信息使用凱撒暗碼編寫成的密碼時,譯碼工作很容易,只需把上述過程倒過來進(jìn)行.當(dāng)然現(xiàn)在的密寫技術(shù)要復(fù)雜許多,這里我構(gòu)造一種編碼技術(shù),請同學(xué)根據(jù)編碼過程自己破譯一下:信息字母與編碼后暗語字母的對應(yīng)法則是:暗碼原碼后移后得到的字母(為原碼字母在語句中的位置即第幾個字母,若移出字母表則在后面續(xù)一張字母表,其中[]為取整符號,空格不計(jì)數(shù)).那么若一句話的暗碼為“JnrzjPKNI”,其原碼是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)已知扇形的周長為10cm,面積為4cm2,求扇形圓心角的弧度數(shù).
(2)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.
(3)已知一扇形的周長為40cm,求它的半徑和圓心角取什么值時,才能使扇形的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(x0),x0∈[,],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=tan(ωx+φ)(ω>0,0<φ<),已知函數(shù)y=f(x)的圖象與x軸相鄰兩個交點(diǎn)的距離為,且圖象關(guān)于點(diǎn)M(-,0)對稱.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)求不等式-1≤f(x)≤的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù),,,,的平均值為2,方差為1,則數(shù)據(jù),,,相對于原數(shù)據(jù)( )
A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com