【題目】已知函數(shù).

1)求函數(shù)上的單調(diào)遞增區(qū)間;

2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.

【答案】1)單調(diào)遞增區(qū)間為;(2)見解析.

【解析】

1)利用二倍角的降冪公式以及輔助角公式可將函數(shù)的解析式化簡為,然后求出函數(shù)上的單調(diào)遞增區(qū)間,與定義域取交集可得出答案;

2)利用三角函數(shù)圖象變換得出,解出不等式的解集,可得知對中的任意一個,每個區(qū)間內(nèi)至少有一個整數(shù)使得,從而得出結論.

1.

,解得,

所以,函數(shù)上的單調(diào)遞增區(qū)間為

,因此,函數(shù)上的單調(diào)遞增區(qū)間為;

(2)將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,

再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象,

,

對于中的任意一個,區(qū)間長度始終為,大于,

每個區(qū)間至少含有一個整數(shù),

因此,存在無窮多個互不相同的整數(shù),使得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系,已知一動圓經(jīng)過點且在軸上截得的弦長為4,設動圓圓心的軌跡為曲線

1求曲線的方程;

2過點作互相垂直的兩條直線,,與曲線交于兩點與曲線交于,兩點線段,的中點分別為,求證:直線過定點,并求出定點的坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當時,求證:;

(2)若有三個零點時,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,,,.

1)求證:

2)在線段上求一點,使銳二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某學校的特長班有50名學生,其中有體育生20名,藝術生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術生則很少進行系統(tǒng)的身體鍛煉,若前兩組的學生中體育生有8名.

(1)根據(jù)頻率分布直方圖及題設數(shù)據(jù)完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計

體育生

20

藝術生

30

合計50

(2)根據(jù)(1)中表格數(shù)據(jù)計算可知,________(填“有”或“沒有”)99.5%的把握認為“心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在的奇函數(shù)滿足:①;②對任意均有;③對任意,均有.

1)求的值;

2)利用定義法證明上單調(diào)遞減;

3)若對任意,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線/的極坐標方程為.

1)求曲線C和直線l的直角坐標方程;

2)過點l的垂線l0CA,B兩點,點Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在黃陵中學舉行的數(shù)學知識競賽中,將高二兩個班參賽的學生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)求第二小組的頻率;

(2)求這兩個班參賽的學生人數(shù)是多少?

(3)這兩個班參賽學生的成績的中位數(shù)應落在第幾小組內(nèi)?(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.不過原點的直線與橢圓相交于兩點,設直線,直線,直線的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案