【題目】老師在四個不同的盒子里面放了4張不同的撲克牌,分別是紅桃,梅花,方片以及黑桃,讓明、小紅、小張、小李四個人進行猜測:
小明說:第1個盒子里面放的是梅花,第3個盒子里面放的是方片;
小紅說:第2個盒子里面飯的是梅花,第3個盒子里放的是黑桃;
小張說:第4個盒子里面放的是黑桃,第2個盒子里面放的是方片;
小李說:第4個盒子里面放的是紅桃,第3個盒子里面放的是方片;
老師說:“小明、小紅、小張、小李,你們都只說對了一半.”則可以推測,第4個盒子里裝的是( )
A. 紅桃或黑桃 B. 紅桃或梅花
C. 黑桃或方片 D. 黑桃或梅花
科目:高中數(shù)學 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .
(1)求橢圓的標準方程;
(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;
(3)設是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓交于兩點.
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點在同一條直線上,直線與平行,且與拋物線只有一個公共點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右有頂點分別是、,上頂點是,圓:的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.
(Ⅰ)求橢圓的方程;
(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、與軸的交點記為,.試判斷是否為定值,若是,證明你的結論.若不是,舉反例說明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設函數(shù),若對于,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com