【題目】老師在四個不同的盒子里面放了4張不同的撲克牌,分別是紅桃,梅花,方片以及黑桃,讓明、小紅、小張、小李四個人進行猜測:

小明說:第1個盒子里面放的是梅花,第3個盒子里面放的是方片

小紅說:第2個盒子里面飯的是梅花,第3個盒子里放的是黑桃;

小張說:第4個盒子里面放的是黑桃,第2個盒子里面放的是方片;

小李說:第4個盒子里面放的是紅桃,第3個盒子里面放的是方片

老師說:“小明、小紅、小張、小李,你們都只說對了一半.”則可以推測,第4個盒子里裝的是( )

A. 紅桃或黑桃 B. 紅桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

【答案】A

【解析】因為四個人都只猜對了一半,故有一下兩種可能:

(1)當小明猜對第1個盒子里面放的是梅花A時,第3個盒子里面放的不是方片A,則小李猜對第4個盒子里面放的時紅桃A,小張猜對第2個盒子里面放的是方片A,小紅猜對第3個盒子里面放的是黑桃A;

(2)若小明猜對的是第3個盒子里面放的是方片A,則第1個盒子里面放的不是梅花A,小紅猜對第2個盒子里面放的是梅花A,小張猜對第4個盒子里面放的是黑桃A,小李猜對第3個盒子里面放的是方片A,則第一個盒子只能是紅桃A,

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標準方程;

(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)上的單調(diào)區(qū)間;

(2) 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是邊長為的正方形,平面,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).

1)若具有性質(zhì),且,求

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;

3)設是無窮數(shù)列,已知.求證:對任意都具有性質(zhì)的充要條件為是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓兩點.

(Ⅰ)若, 的面積為4,求拋物線的方程;

(Ⅱ)若三點在同一條直線上,直線平行,且與拋物線只有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右有頂點分別是、,上頂點是,圓的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、軸的交點記為,.試判斷是否為定值,若是,證明你的結論.若不是,舉反例說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設函數(shù),若對于,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

同步練習冊答案