【題目】設,,函數(shù).
(Ⅰ)設不等式的解集為C,當時,求實數(shù)取值范圍;
(Ⅱ)若對任意,都有成立,試求時,的值域;
(Ⅲ)設,求的最小值.
【答案】(Ⅰ)(Ⅱ).(Ⅲ)當時,函數(shù)的最小值為;當時,函數(shù)的最小值為;當時,函數(shù)的最小值為
【解析】
(Ⅰ)根據(jù),且,可知滿足題意的條件為使函數(shù)與軸的兩個交點橫坐標,可得關于m的不等式組,解不等式組即可得m的取值范圍;
(Ⅱ)根據(jù)可得對稱軸,即可求得m的值。則二次函數(shù)在B集合內的值域即可求出;
(Ⅲ)對分類討論,在的不同取值范圍下討論的單調性,即可求得在不同取值范圍時的最小值。
(Ⅰ),因為,二次函數(shù)圖象
開口向上,且恒成立,故圖象始終與軸有兩個交點,由題意,要使這兩個
交點橫坐標,當且僅當
, 解得
(Ⅱ)對任意都有,所以圖象關于直線對稱
所以,得
所以為上減函數(shù).
;.
故時,值域為.
(Ⅲ)令,則
(i)當時,,
當,則函數(shù)在上單調遞減,
從而函數(shù)在上的最小值為.
若,則函數(shù)在上的最小值為,且.
(ii)當時,函數(shù)
若,則函數(shù)在上的最小值為,且
若,則函數(shù)在上單調遞增,
從而函數(shù)在上的最小值為.
綜上,當時,函數(shù)的最小值為
當時,函數(shù)的最小值為
當時,函數(shù)的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若關于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓方程為,射線與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).
(1)求證:直線AB的斜率為定值;
(2)求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高一學生暑假里在家讀書情況,特隨機調查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統(tǒng)計如下表:
(1)根據(jù)統(tǒng)計表判斷男生和女生誰的平均讀書時間更長?并說明理由;
(2)求100名學生每天讀書時間的平均數(shù),并將每天平均時間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:
(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認為“平均閱讀時間超過或不超過平均數(shù)是否與性別有關?”
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結果,產(chǎn)生了如下20組隨機數(shù):
據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com