【題目】橢圓的左、右焦點為,離心率為,已知過軸上一點作一條直線,交橢圓于兩點,且的周長最大值為8.

(1)求橢圓方程;

(2)以點為圓心,半徑為的圓的方程為.的中點作圓的切線,為切點,連接,證明:當(dāng)取最大值時,點在短軸上(不包括短軸端點及原點).

【答案】(1)(2)見解析

【解析】

(1)利用三角形的周長的最大值結(jié)合橢圓的定義,求出a,利用離心率求解c,然后求出b,即可得到橢圓方程.

(2)設(shè)A(x1,y1),B(x2,y2),聯(lián)立,利用韋達(dá)定理,結(jié)合△>0得m2<4k2+2,求出C的坐標(biāo),求出|NC|,|NE|,利用函數(shù)的導(dǎo)數(shù)求出最大值,推出m的范圍.

解:(1)由題意得

,∴,∴

∴所求橢圓方程為.

(2)設(shè),聯(lián)立

(*),且,∴

∵以點為圓心,為半徑的圓的方程為,∴,

,整理得

,∴

,

,∴

,則,

上單調(diào)遞增,,當(dāng)且僅當(dāng)時等號成立,

此時取得最大值,且,

,∴

在短軸上(不包括短軸端點及原點).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),定義域均為

(1)若當(dāng)時,的最小值與的最小值的和為,求實數(shù)的值;

(2)設(shè)函數(shù),定義域為

①若,求實數(shù)的值;

②設(shè)函數(shù),定義域為.若對于任意的,總能找到一個實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象,向右平移個單位長度,再把縱坐標(biāo)伸長到原來的2倍,得到函數(shù),則下列說法正確的是( )

A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調(diào)遞增

C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( )

(1)很小的實數(shù)可以構(gòu)成集合;

(2)集合與集合是同一個集合;

(3) 這些數(shù)組成的集合有5個元素;

(4)任何集合至少有兩個子集.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最小值;

2)當(dāng)時,記函數(shù)的所有單調(diào)遞增區(qū)間的長度為,所有單調(diào)遞減區(qū)間的長度為,證明:.(注:區(qū)間長度指該區(qū)間在軸上所占位置的長度,與區(qū)間的開閉無關(guān).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列的定義可用數(shù)學(xué)符號語言描述為________,其中,其通項公式_________,__________=_________,等差數(shù)列中,若________()

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,對于任意的,都有且當(dāng)時,,若.

(1)求證:為奇函數(shù);

(2)求證: 上的減函數(shù);

(3)求函數(shù)在區(qū)間[-2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項體能測試中,規(guī)定每名運動員必需參加且最多兩次,一旦第一次測試通過則不再參加第二次測試,否則將參加第二次測試.已知甲每次通過的概率為,乙每次通過的概率為,且甲乙每次是否通過相互獨立.

(Ⅰ)求甲乙至少有一人通過體能測試的概率;

(Ⅱ)記為甲乙兩人參加體能測試的次數(shù)和,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是偶函數(shù),

(1) 求的值;

(2)當(dāng)時,設(shè),若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案