【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點(diǎn)E,點(diǎn)F為弦CD上異于點(diǎn)E的任意一點(diǎn),連接BF、AF并延長(zhǎng)交⊙O于點(diǎn)M、N.
(1)求證:B、E、F、N四點(diǎn)共圓;
(2)求證:AC2+BFBM=AB2

【答案】
(1)證明:連結(jié)BN,則AN⊥BN,

又CD⊥AB,

則∠BEF=∠BNF=90°,即∠BEF+∠BNF=180°,

則B、E、F、N四點(diǎn)共圓


(2)證明:由直角三角形的射影原理可知AC2=AEAB,

由Rt△BEF與Rt△BMA相似可知: ,

∴BFBM=BABE=BA(BA﹣EA),

∴BFBM=AB2﹣ABAE,

∴BFBM=AB2﹣AC2,即AC2+BFBM=AB2


【解析】(1)連結(jié)BN,證明∠BEF+∠BNF=180°,即可證明B、E、F、N四點(diǎn)共圓;(2)由直角三角形的射影原理可知AC2=AEAB,由Rt△BEF與Rt△BMA相似可知: ,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x3+3x2-9x
(I)求fx)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)fx)在區(qū)間[-4,c]上的最小值為-5,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿(mǎn)足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域?yàn)?/span>

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

,

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點(diǎn)睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿(mǎn)足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),定號(hào),下結(jié)論五個(gè)步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實(shí)數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時(shí),
(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;
(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;
(Ⅲ)當(dāng)λ取何值時(shí),方程f(x)=λ在(-1,1)上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開(kāi)車(chē)到公司上班路上有 L1 , L2 兩條路線(xiàn)(如圖),L1 路線(xiàn)上有 A1 , A2 , A3 三個(gè)路口,各路口遇到紅燈的概率均為 ;L2 路線(xiàn)上有 B1 , B2 兩個(gè)路.各路口遇到紅燈的概率依次為 .若走 L1 路線(xiàn),王先生最多遇到 1 次紅燈的概率為;若走 L2 路線(xiàn),王先生遇到紅燈次數(shù) X 的數(shù)學(xué)期望為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線(xiàn)段AB上一動(dòng)點(diǎn),且 ,設(shè)異面直線(xiàn) NM 與 AC 所成角為α,當(dāng) 時(shí),則cosα的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,分別是角A、B、C的對(duì)邊, ,且

(1)求角A的大; (2)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)P在△ABC的BC邊所在的直線(xiàn)上從左到右運(yùn)動(dòng),設(shè)△ABP與△ACP的外接圓面積之比為λ,當(dāng)點(diǎn)P不與B,C重合時(shí),( )
A.λ先變小再變大
B.當(dāng)M為線(xiàn)段BC中點(diǎn)時(shí),λ最大
C.λ先變大再變小
D.λ是一個(gè)定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:
①分類(lèi)變量A與B的隨機(jī)變量K2越大,說(shuō)明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線(xiàn)性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線(xiàn)性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線(xiàn)方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案