【題目】設(shè)點P在△ABC的BC邊所在的直線上從左到右運動,設(shè)△ABP與△ACP的外接圓面積之比為λ,當點P不與B,C重合時,( )
A.λ先變小再變大
B.當M為線段BC中點時,λ最大
C.λ先變大再變小
D.λ是一個定值

【答案】D
【解析】解:設(shè)△ABP與△ACP的外接圓半徑分布為r1,r2,

則2r1= ,2r2=

∵∠APB+∠APC=180°,

∴sin∠APB=sin∠APC,

=

∴λ= =

所以答案是:D.

【考點精析】通過靈活運用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應(yīng)的函數(shù)值即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的定義域;

2判斷函數(shù)的奇偶性,并說明理由;

3判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N.
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若分別為P(1,0)、Q(2,0),R(4,0)、S(8,0)四個點各作一條直線,所得四條直線恰圍成正方形,則該正方形的面積不可能為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對于任意正實數(shù)x恒有f(x)≥g(x)
B.存在實數(shù)x0 , 當x>x0時,恒有f(x)>g(x)
C.對于任意正實數(shù)x恒有f(x)≤g(x)
D.存在實數(shù)x0 , 當x>x0時,恒有f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+ )= .圓O的參數(shù)方程為 (θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(ρ≥0,0≤θ<2π );
(Ⅱ)當r為何值時,圓O上的點到直線l的最大距離為2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當x≥0時,
f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為( 。
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

同步練習冊答案