【題目】已知函數(shù), .
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(3)判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.
【答案】(1)(2)函數(shù)F (x)是偶函數(shù)(3)在區(qū)間(0,1)上是減函數(shù)
【解析】試題分析:(1)由 可得函數(shù)f(x)+g(x)的定義域;
(2)根據(jù)F(﹣x)=F(x),可得:函數(shù)F (x)是偶函數(shù);
(3)F(x)=f(x)+g(x)在區(qū)間(0,1)上是減函數(shù),作差可證明結(jié)論.
試題解析:
(1)要使函數(shù)有意義,則,
解得,即函數(shù)的定義域?yàn)?/span>{x |};
(2),其定義域關(guān)于原點(diǎn)對(duì)稱,
又,∴函數(shù)F (x)是偶函數(shù).
(3)在區(qū)間(0,1)上是減函數(shù).
設(shè)x1、x2∈(0,1),x1 < x2,則
,
∵x1、x2∈(0,1),x1 < x2
∴,即
∵x1、x2∈(0,1),∴,
∴,故,即,
故在區(qū)間(0,1)上是減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為 ( 為參數(shù)), .
(Ⅰ)求曲線 的直角坐標(biāo)方程,并判斷該曲線是什么曲線?
(Ⅱ)設(shè)曲線 與曲線 的交點(diǎn)為 , , ,當(dāng) 時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+3x2-9x .
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-4,c]上的最小值為-5,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的半焦距為 ,原點(diǎn) 到經(jīng)過(guò)兩點(diǎn) 的直線的距離為 .
(Ⅰ)求橢圓 的離心率;
(Ⅱ)如圖, 是圓 的一條直徑,若橢圓 經(jīng)過(guò) 兩點(diǎn),求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=cos2x的圖象向左平移 個(gè)單位,得到函數(shù)y=f(x)cosx的圖象,則f(x)的表達(dá)式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義域?yàn)镽的奇函數(shù)f(x)滿足f(1+x)=﹣f(x),則下列結(jié)論: ①f(x)的圖象關(guān)于點(diǎn) 對(duì)稱;
②f(x)的圖象關(guān)于直線 對(duì)稱;
③f(x)是周期函數(shù),且2個(gè)它的一個(gè)周期;
④f(x)在區(qū)間(﹣1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號(hào)是 . (填上你認(rèn)為所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域?yàn)?/span>
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點(diǎn)睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),定號(hào),下結(jié)論五個(gè)步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時(shí), .
(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;
(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;
(Ⅲ)當(dāng)λ取何值時(shí),方程f(x)=λ在(-1,1)上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P在△ABC的BC邊所在的直線上從左到右運(yùn)動(dòng),設(shè)△ABP與△ACP的外接圓面積之比為λ,當(dāng)點(diǎn)P不與B,C重合時(shí),( )
A.λ先變小再變大
B.當(dāng)M為線段BC中點(diǎn)時(shí),λ最大
C.λ先變大再變小
D.λ是一個(gè)定值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com