【題目】已知橢圓的右焦點為,且過點
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l:與橢圓在第一象限的交點為M,過點F且斜率為的直線與l交于點N,若與的面積之比為3:為坐標(biāo)原點,求k的值.
【答案】(1);(2)或
【解析】
(1)根據(jù)題意列出有關(guān)的方程組,求出這兩個數(shù)的值,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點的坐標(biāo)為,點的坐標(biāo),利用已知條件可得,然后將直線的方程分別與橢圓方程和直線的方程聯(lián)立,求出點的坐標(biāo),結(jié)合條件可求出的值.
(1)由題意可知,解得(負(fù)值舍去),
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)點的坐標(biāo)為,點的坐標(biāo),由題可知,
與的面積之比為3:2,與的面積之比為2:5,
也即.
由,消去,可得,
易知直線的方程為,
由,消去,可得,
所以,整理得,解得或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時,解不等式;
(2)如果不等式的解集為空集,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在,使成立,則稱為的不動點.已知函數(shù) .
(1)當(dāng),時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若的兩個不動點為,,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng),從該系統(tǒng)中隨機選出100名交易者,并對其交易評價進行了統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對服務(wù)滿意與對商品滿意之間有關(guān)”?
對服務(wù)滿意 | 對服務(wù)不滿意 | 合計 | |
對商品滿意 | |||
對商品不滿意 | |||
合計 |
(2)若對商品和服務(wù)都不滿意者的集合為.已知中有2名男性,現(xiàn)從中任取2人調(diào)查其意見.求取到的2人恰好是一男一女的概率.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()若,求曲線在點處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()設(shè)函數(shù),若對于任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點, 是棱上的點, , .
(Ⅰ)求證:平面平面;
(Ⅱ)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com