已知矩陣
a2
21
-1=
-12
2b
,則a+b=
 
考點(diǎn):逆變換與逆矩陣
專題:計(jì)算題,矩陣和變換
分析:求出
.
a2
21
.
=a-4,可得矩陣M的逆矩陣,即可得出結(jié)論.
解答: 解:由題意,
.
a2
21
.
=a-4,
a2
21
-1=
1
a-4
-
2
a-4
-
2
a-4
a
a-4

∵矩陣
a2
21
-1=
-12
2b
,
∴a=3,b=-3,
∴a+b=0.
故答案為:0.
點(diǎn)評(píng):本題主要考查矩陣M的逆矩陣,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
a2
73
的逆矩陣A-1=
b-2
-7a
,則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條信息,若一個(gè)人得知后用一小時(shí)將信息傳給另一人,這2人又用一個(gè)小時(shí),各傳給未知此事的另外2人,如此繼續(xù)下去,10小時(shí)可傳遍
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果隨機(jī)變量ξ的概率分布律由下表給出:則Dξ=
 

x0
π
2
π
P(ξ=x)
1
4
1
2
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象為開口向下的拋物線,且對(duì)任意x∈R都有f(1+x)=f(1-x).若向量
a
=(m,-1),
b
=(m,-2),則滿足不等式f(
a
b
)>f(-1)的m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x+1,x≤1
lnx,x>1
則方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)O是△ABC的外接圓圓心,且AB=3,AC=4.若存在非零實(shí)數(shù)x、y,使得
AO
=x
AB
+y
AC
,且x+2y=1,則cos∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中不正確的是( 。
A、對(duì)于線性回歸方程
y
=
b
x+
a
,直線必經(jīng)過點(diǎn)(
.
x
.
y
B、莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C、將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D、擲一枚均勻硬幣出現(xiàn)正面向上的概率是
1
2
,那么一枚硬幣投擲2次一定出現(xiàn)正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中,正確命題的個(gè)數(shù)是( 。﹤(gè)
①若平面α∥平面β,直線m∥平面α,則m∥β;
②若平面α⊥平面γ,且平面β⊥平面γ,則α∥β;
③平面α⊥平面β,且α∩β=l,點(diǎn)A∈α,A∉l,若直線AB⊥l,則AB⊥β;
④直線m、n為異面直線,且m⊥平面α,n⊥平面β,若m⊥n,則α⊥β.
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案