設函數(shù)f(x)=
x2+bx+c,x≤0
2,x>0
,若f(-4)=f(0),f(-2)=-2,則函數(shù)g(x)=f(x)-x的零點個數(shù)為______.
由f(-4)=f(0)得16-4b+c=c,解得b=4.又f(-2)=-2,即4-8+c=-2,解得c=2.
所以f(x)=
x2+4x+2,x≤0
2,x>0
,由g(x)=0,得f(x)=x,在同一個坐標系中,分別作出函數(shù)y=f(x),y=x圖象,
如圖:由圖象可知兩圖象有三個交點,所以函數(shù)g(x)=f(x)-x的零點個數(shù)為3個.
故答案為:3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的一個零點在內(nèi),則實數(shù)的取值范圍是(   )
A.B.  C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程mx2+(2m+1)x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是(  )
A.m>-
1
4
B.m<-
1
4
C.m≥
1
4
D.m>-
1
4
且m≠0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+mx+n有兩個零點-1與3
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)對任意x1,x2∈[t,t+1],且x1≠x2,都有
g(x1)-g(x2)
x1-x2
>0
成立,試求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知關于x的一元二次方程2x2+px+15=0有一個零點是-3,則另一個零點是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

根據(jù)下表,能夠判斷f(x)=g(x)在四個區(qū)間:①(-1,0);②(0,1);③(1,2);④(2,3)中有實數(shù)解是的______(填序號).
x-10123
f(x)-0.6773.0115.4325.9807.651
g(x)-0.5303.4514.8905.2416.892

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)函f(x)=x|x|-2x(x∈R)
(1)判斷函數(shù)的奇偶性,并用定義證明;
(2)作出函數(shù)f(x)=x|x|-2x的圖象;
(3)討論方程x|x|-2x=a根的情況.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
x+2,0≤x<1
2x+
1
2
,x≥1.
若a>b≥0,且f(a)=f(b),則bf(a)的取值范圍是( 。
A.[
5
4
,3)
B.[
5
2
,3)
C.[
1
2
,3)
D.[1,3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=2x+log2x的零點在區(qū)間(  )內(nèi).
A.(
1
4
,
1
3
)
B.(
1
3
2
5
)
C.(
2
5
,
1
2
)
D.(
1
2
,
2
3
)

查看答案和解析>>

同步練習冊答案