【題目】【2015高考山東文數(shù)】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社團(tuán)

未參加書法社團(tuán)

參加演講社團(tuán)

未參加演講社團(tuán)

(1)從該班隨機(jī)選名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;

(2)在既參加書法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有5名男同學(xué)名女同學(xué)現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.

【答案】(1) ;(2).

【解析】

(1)由調(diào)查數(shù)據(jù)可知,既未參加書法社團(tuán)又未參加演講社團(tuán)的有人,故至少參加上述一個社團(tuán)的共有人,所以從該班級隨機(jī)選名同學(xué),該同學(xué)至少參加上述一個社團(tuán)的概率為

(2)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,其一切可能的結(jié)果組成的基本事件有:

,共個.

根據(jù)題意,這些基本事件的出現(xiàn)是等可能的.

事件被選中且未被選中所包含的基本事件有:,共個.

因此被選中且未被選中的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖場需定期購買飼料,已知該場每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購買飼料每次支付運(yùn)費(fèi)300元.

(1)求該場多少天購買一次飼料才能使平均每天支付的總費(fèi)用最少;

(2)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時,其價(jià)格可享受八五折優(yōu)惠(即原價(jià)為85%).問:該場是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【江西省臨川實(shí)驗(yàn)學(xué)校2017屆高三第一次模擬考試數(shù)學(xué)(文)】已知拋物線,焦點(diǎn)為,點(diǎn)在拋物線上,且的距離比到直線的距離小1.

(1)求拋物線的方程;

(2)若點(diǎn)為直線上的任意一點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)分別為,求證:直線恒過某一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為且過點(diǎn)(4,- )

(1)求雙曲線方程;

(2)若點(diǎn)M(3m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;

(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形的半徑為r cm,周長為20cm,問扇形的圓心角α等于多少弧度時,這個扇形的面積最大,并求出扇形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考北京文數(shù)】某市居民用水?dāng)M實(shí)行階梯水價(jià),每人月用水量中不超過w立方米的部分按4元/立方米收費(fèi),超出w立方米的部分按10元/立方米收費(fèi).從該市隨機(jī)調(diào)查了10 000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

(I)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,w至少定為多少?

(II)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)w=3時,估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖像在點(diǎn)M(1,f(1))處的切線方程為x2y50

(1)求函數(shù)yf(x)的解析式;

(2)求函數(shù)yf(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn),左右焦點(diǎn)分別為、,圓與直線相交所得弦長為2. 

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上不在軸上的一個動點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交橢圓、兩個不同的點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個非零向量 不共線.
(1)如果 = + , =2 +8 , =3 ﹣3 ,求證:A、B、D三點(diǎn)共線;
(2)若| |=2,| |=3, 的夾角為60°,是否存在實(shí)數(shù)m,使得m + 垂直?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案