已知銳角△ABC中,三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若
3
b=2asinB;
(1)求角A的大;     
(2)若a=
7
,c=2,求邊b的長度及△ABC的面積.
分析:(1)根據(jù)
3
b=2asinB和正弦定理,確定出sinA的值,進(jìn)而確定角A的大。
(2)根據(jù)余弦定理,確定b的大小,再根據(jù)面積公式S△ABC=
1
2
bcsinA
求出△ABC的面積.
解答:解:(1)由
b
sinB
=
a
3
2

sinA=
3
2

∵A為銳角
∴A=60°
(2)由
a2=b2+c2-2bccosA

7=b2+4-2b×2×
1
2

b2-2b-3=0
b=3,b=-1(舍去)

S△ABC=
1
2
bcsinA
=
1
2
×3×2×
3
2
=
3
3
2
點(diǎn)評:本題考查了正弦定理余弦定理的應(yīng)用,屬于基礎(chǔ)題型,應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,角A、B、C的對邊分別為a,b,c,a=
2
,b=
3
,B=
π
3

(Ⅰ)求角A的大。
(Ⅱ)設(shè)函數(shù)f(x)=cosB•sin2x+cos2x,當(dāng)x∈[-
π
4
,0]
時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中的三個(gè)內(nèi)角分別為A,B,C.
(1)設(shè)
BC
CA
=
CA
AB
,求證:△ABC是等腰三角形;
(2)設(shè)向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•淮安模擬)已知銳角△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大。
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A?>0,ω>0,-
π
2
<φ<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)已知銳角△ABC中的三個(gè)內(nèi)角分別為A,B,C,若有f(
A
π
)=
3
2
,邊BC=
7
,sin B=
21
7
求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,三個(gè)內(nèi)角為A,B,C,兩向量
p
=(2-2sinA,cosA+sinA),
q
=(sinA-cosA,1+sinA),若
p
q
是共線向量.
(1)求∠A的大;  
(2)求函數(shù)y=2sin2B+cos(
C-3B
2
)
取最大值時(shí),∠B的大。

查看答案和解析>>

同步練習(xí)冊答案