線段MN的兩端點(diǎn)分別在直二面角α-AB-β的兩個面內(nèi),并與這兩個面都成角,則異畫直線AB與MN所成的角為

[  ]

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線段MN的兩個端點(diǎn)M、N分別在x軸、y軸上滑動,且|MN|=4,點(diǎn)P在線段MN上,滿足
MP
=m
MN
(0<m<1),記點(diǎn)P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與m的值的關(guān)系;
(2)當(dāng)m=
1
4
時,設(shè)A、B是曲線W與x軸、y軸的正半軸的交點(diǎn),過原點(diǎn)的直線與曲線W交于C、D兩點(diǎn),其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段MN的兩個端點(diǎn)M、N分別在x軸、y 軸上滑動,|MN|=5,點(diǎn)P是線段MN上一點(diǎn),且
MP
=
2
3
PN
,點(diǎn)P隨線段MN的運(yùn)動而變化.
(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形紙片ABCD中,AB=6,AD=12,將舉行制品的右下角沿線段MN折疊,使矩形的頂點(diǎn)B落在矩形的邊AD上,記該點(diǎn)為E,且折痕MN的兩端點(diǎn)M、N分別位于邊AB,BC上,設(shè)∠MNB=θ,MN=l,△EMN的面積為S,
(1)將l表示成θ的函數(shù),并確定θ的取值范圍;
(2)問當(dāng)θ為何值時,△EMN的面積S取得最小值?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知線段MN的兩個端點(diǎn)MN分別在軸、軸上滑動,且,點(diǎn)P在線段MN上,滿足,記點(diǎn)P的軌跡為曲線W

(1)求曲線W的方程,并討論W的形狀與的值的關(guān)系;

(2)當(dāng)時,設(shè)A、B是曲線W軸、軸的正半軸的交點(diǎn),過原點(diǎn)的直線與曲線W交于C、D兩點(diǎn),其中C在第一象限,求四邊形ACBD面積的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案