【題目】設(shè)雙曲線 的兩個(gè)焦點(diǎn)分別為F1、F2離心率e=2.
(1)求此雙曲線的漸近線l1、l2的方程;
(2)若A、B分別為l1、l2上的點(diǎn),且 求線段AB的中點(diǎn)M的軌跡方程.
(3)過點(diǎn)N(1,0)能否作直線l , 使l與雙曲線交于不同兩點(diǎn)P、Q.且 ,若存在,求直線l的方程,若不存在,說明理由.
【答案】
(1)
【解答】雙曲線離心率為, ,所以漸近線方程:
(2)
【解答】設(shè)A(x1,y1)、B(x2,y2)AB的中點(diǎn)M(x,y)∵2|AB|=5|F1F2|∴|AB|=10
∴(x1,x2)2+(y1–y2)2=100,又 , ,x1+x2=2x,y1+y2=2y.
∴ ,
∴ , 即
(3)
【解答】假設(shè)存在這樣的直線e,設(shè)其方程為y=k(x-1) P(x1,y1),Q(x2,y2)∵
∴x1x2+y1y2=0 ∴x1x2+k2[x1x2-(x1+x2)+1]=0 ①
由 得(3k2-1)x2-6k2x+3k2-3=0 ∴ ②
由①②得: k2+3=0 ∴k不存在,即這樣的直線不存在.
【解析】本題考查了雙曲線的定義分析問題、解決問題的能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)過點(diǎn)作曲線的切線,若所有切線的斜率之和為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點(diǎn),給出下列四個(gè)判斷:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點(diǎn)的距離之和為定值;
②曲線C關(guān)于直線y=x、y=-x均對(duì)稱;③曲線C所圍區(qū)域面積必小于36.
④曲線C總長(zhǎng)度不大于6π.上述判斷中正確命題的序號(hào)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列各條件的橢圓的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過點(diǎn)A(2,0);
(2)短軸一個(gè)端點(diǎn)與兩焦點(diǎn)組成一個(gè)正三角形,且焦點(diǎn)到同側(cè)頂點(diǎn)的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn).若A是PB的中點(diǎn),求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正實(shí)數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓E經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1 , F2在x軸上,離心率e= .
(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com