【題目】設(shè),函數(shù)
(1)若,求出函數(shù)在區(qū)間上的最大值.
(2)若,求出函數(shù)的單調(diào)區(qū)間(不必證明)
(3)若存在,使得關(guān)于方程有三個不相等的實數(shù)根,求出實數(shù)的取值范圍.
【答案】(1)
(2)遞增區(qū)間和遞減區(qū)間
(3)
【解析】
(1)當(dāng)時,,結(jié)合去絕對值解法求最值即可;
(2)同樣是采用去絕對值解法,寫出分段函數(shù),畫出函數(shù)大致圖像,判斷函數(shù)增減區(qū)間即可;
(3)可結(jié)合(1)(2)結(jié)果,以為分界,再結(jié)合函數(shù)圖像確定函數(shù)圖像的增減性,結(jié)合數(shù)形結(jié)合思想得出關(guān)于參數(shù)的不等式,再結(jié)合對勾函數(shù)性質(zhì)即可求解
(1)當(dāng)時,,畫出函數(shù)圖像,如圖:
當(dāng)時,函數(shù)為增函數(shù),;
(2)當(dāng)時,,
當(dāng)時,函數(shù)對稱軸為,所以當(dāng)時,單調(diào)遞增;
當(dāng)時,函數(shù)對稱軸為,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減,
綜上所述,當(dāng)和時,函數(shù)單增,當(dāng)時,函數(shù)單調(diào)遞減;
(3)當(dāng)時,,函數(shù)在時單增,,此時分段函數(shù)對應(yīng)的對稱軸在軸右側(cè),則在時,也時單增,不可能使得
有三個不相等的實數(shù)根;
當(dāng)時,,要使有三個不相等的實數(shù)根,即應(yīng)介于如圖所示兩虛線范圍之間,,當(dāng)時,
,即,
化簡得,,時取到最小值,當(dāng)時,單調(diào)遞增(對勾函數(shù)性質(zhì)),則,
故,故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評價空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對應(yīng)如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計圖:
根據(jù)統(tǒng)計圖判斷,下列結(jié)論正確的是( )
A. 整體上看,這個月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半個月的空氣質(zhì)量
C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,動直線過定點且交橢圓于,兩點(,不在軸上).
(1)若線段中點的縱坐標(biāo)是,求直線的方程;
(2)記點關(guān)于軸的對稱點為,若點滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時,若,,總有成立,其中所有正確命題的序號是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求C的普通方程和的直角坐標(biāo)方程;
(2)求C上的點到距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑.如圖,四棱錐中,底面為平行四邊形,,,底面.
(1)求證:平面.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若,求點A到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一幢高樓上安放了一塊高約10 米的 LED 廣告屏,一測量愛好者在與高樓底部同一水平線上的 C 處測得廣告屏頂端A 處的仰角為 31.80°,再向大樓前進(jìn) 20 米到 D 處,測得廣告屏頂端 A 處的仰角為 37.38°(人的高度忽略不計).
(1)求大樓的高度(從地面到廣告屏頂端)(精確到 1 米);
(2)若大樓的前方是一片公園空地,空地上可以安放一些長椅,為使坐在其中一個長椅上觀看廣告屏最清晰(長 椅的高度忽略不計),長椅需安置在距大樓底部 E 處多遠(yuǎn)?已知視角 ∠AMB( M 為觀測者的位置, B 為廣告屏 底部)越大,觀看得越清晰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,以坐標(biāo)原點為極點,軸正半軸為極軸,直線的極坐標(biāo)方程為,直線交圓于兩點,為中點.
(1)求點軌跡的極坐標(biāo)方程;
(2)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com