若函數(shù)f(x)=
x+1
x-2
的定義域?yàn)榧螦,函數(shù)g(x)=lg(x2-(2a+1)x+a2+a)的定義域?yàn)榧疊
(1)求集合A,B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
分析:(1)根據(jù)二次根式的被開(kāi)方數(shù)大于0,以及對(duì)數(shù)的真數(shù)大于0,解關(guān)于x的不等式即可得到兩個(gè)函數(shù)的定義域,從而得到集合A和集合B;
(2)根據(jù)題意,集合A是集合B的子集.由此結(jié)合數(shù)軸建立關(guān)于x的不等式,解之即可得到滿足條件的實(shí)數(shù)a的取值范圍.
解答:解:(1)∵函數(shù)f(x)=
x+1
x-2
的定義域滿足
x+1
x-2
≥0,解之得x≤-1或x>2
∴集合A={x|x≤-1或x>2}
又∵數(shù)g(x)=lg(x2-(2a+1)x+a2+a)的定義域滿足x2-(2a+1)x+a2+a>0
即(x-a)(x-a-1)>0,解之得x<a或x>a+1
∴集合B={x|x<a或x>a+1}…(6分)
(2)∵A∩B=A,∴A⊆B
結(jié)合(1)的結(jié)論,可得
a+1≤2
a>-1
,解之得-1<a≤1
∴滿足A∩B=A的實(shí)數(shù)a的取值范圍為(-1,1]…(14分)
點(diǎn)評(píng):本題給出含有根號(hào)和對(duì)數(shù)的兩個(gè)函數(shù),求函數(shù)的定義域并討論它們的包含關(guān)系.著重考查了基本初等函數(shù)的定義域求法和集合的基本運(yùn)算等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足條件:當(dāng)x1,x2∈[-1,1]時(shí),有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱(chēng)f(x)∈Ω.對(duì)于函數(shù)g(x)=x3,h(x)=
1
x+2
,有( 。
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù) f(x)=ax (a>0,a≠1 ) 的部分對(duì)應(yīng)值如表:

則不等 式f-1(│x│<0)的解集是       


  1. A.
    {x│-1<x<1}
  2. B.
    {x│x<-1或x>1}
  3. C.
    {x│0<x<1}
  4. D.
    {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案