如圖,是邊長(zhǎng)為的正方形,平面,,,與平面所成角為.

(1)求證:平面
(2)求二面角的余弦值;
(3)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.
(1) 參考解析;(2) ; (3)

試題分析:(1)因?yàn)橐C平面即直線與平面垂直的證明,通過(guò)證明這條直線垂直平面內(nèi)的兩條相交直線即可,依題意易得到.
(2)因?yàn)橐蠖娼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556387548.png" style="vertical-align:middle;" />的余弦值,一般是通過(guò)建立空間坐標(biāo)系,寫(xiě)出相應(yīng)的點(diǎn)的坐標(biāo),由于AC所在的向量就是平面EDB的法向量,所以關(guān)鍵是通過(guò)待定系數(shù)法求出平面EFB的法向量.再通過(guò)兩法向量的夾角得到兩平面的二面角的大小,二面角是鈍角還是銳角通過(guò)圖形來(lái)確定.
(3)因?yàn)辄c(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面.通過(guò)對(duì)點(diǎn)M的假設(shè)寫(xiě)出向量AM.從而由該向量垂直平面的法向量,即可得到相應(yīng)的點(diǎn)M的坐標(biāo).
試題解析:(1)證明: 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556247435.png" style="vertical-align:middle;" />平面,   所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556216532.png" style="vertical-align:middle;" />是正方形,所以,又相交
從而平面.  
(2)解:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556793653.png" style="vertical-align:middle;" />兩兩垂直,所以建立空間直角坐標(biāo)系如圖所示.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556294397.png" style="vertical-align:middle;" />與平面所成角為, 即,
所以.由可知,.
,,
所以,
設(shè)平面的法向量為,則,即,
,則. 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556356418.png" style="vertical-align:middle;" />平面,所以為平面的法向量,,
所以.
因?yàn)槎娼菫殇J角,所以二面角的余弦值為
(3)解:點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),設(shè). 則
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034556465523.png" style="vertical-align:middle;" />平面,所以,
,解得.
此時(shí),點(diǎn)坐標(biāo)為,符合題意. 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD=2,OCD的中點(diǎn),沿AO將△AOD折起,使DB.

(1)求證:平面AOD⊥平面ABCO;
(2)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,DBC的中點(diǎn).

(1)求證:A1B∥平面ADC1;
(2)若ABBB1=2,求A1D與平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,底面, ,的中點(diǎn),的中點(diǎn).

(Ⅰ)證明:直線平面;
(Ⅱ)求異面直線所成角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(2,3),B(-2,6),C(6,6),D(10,3),則以A、B、C、D為頂點(diǎn)的四邊形是(   )
A.菱形                      B.鄰邊不等的平行四邊形
C.梯形                      D.不能構(gòu)成平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
v1
v2
,
v3
分別是空間三條不同直線l1,l2,l3的方向向量,則下列命題中正確的是(  )
A.l1l2,l2
l3
v1
v3
(λ∈R)
B.l1l2,l2
l3
v1
v3
(λ∈R)
C.l1,l2,l3平行于同一個(gè)平面⇒?λ,μ∈R,使得
v1
v2
v3
D.l1,l2,l3共點(diǎn)⇒?λ,μ∈R,使得
v1
v2
v3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,ABBC=1,動(dòng)點(diǎn)P,Q分別在線段C1DAC上,則線段PQ長(zhǎng)度的最小值是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OEFD1所成的角的余弦值等于 (  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,為正三角形,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面PBD;
(Ⅱ)若時(shí),求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案