【題目】據俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達報道:當地時間17日,參加中俄“海上聯合-2015(Ⅰ)”軍事演習的9艘艦艇抵達地中海預定海域,混編組成海上聯合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時,輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經過t小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)為保證小艇在30分鐘內(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說明你的推理過程;
(3)是否存在v,使得小艇以v海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.
【答案】:(1) ;(2) ;(3)
【解析】試題分析:(1)先假設相遇時小艇的航行距離為,根據余弦定理可得到關系式 ,整理后運用二次函數的性質可確定答案;(2)先假設小艇與輪船在某處相遇,根據余弦定理可得到 ,再由 的范圍求得 的最小值;(3)根據(2)中與的關系式,設,然后代入關系式整理成,將問題等價于有兩個不等正根的問題,進而得解.
試題解析:(1) 設相遇時小艇航行的距離為S海里,則
S=,
當t=,Smin=10,v=30,
即小艇以30的速度航行時,相遇時小艇航行距離最小.
(2) 設小艇與輪船在B處相遇.
由題意得(vt)2=202+(30t)2-1 200t·cos60°,
v2=4002+675.
∵ 0<t≤, ∴=2時,v取得最小值10.
(3) 由(2)知v2=-+900,設=μ(μ>0),
∴ 400μ2-600μ+900v2=0.
小艇總能有兩種不同的航行方向與輪船相遇,等價于上述方程應有兩個不等正根,
解得15<v<30.
科目:高中數學 來源: 題型:
【題目】如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻長為米(2).
⑴用表示墻的長;
⑵假設所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價(元)表示為(米)的函數;
⑶當為何值時,墻壁的總造價最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設,并在公路北側建造邊長為的正方形無頂中轉站CDEF(其中EF在GH上),現從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關于的函數解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(必須列式,不能只寫答案,答案用數字表示)有4個不同的球,四個不同的盒子,把球全部放入盒內.
(1)求共有多少種放法;
(2)求恰有一個盒子不放球,有多少種放法;
(3)求恰有兩個盒內不放球,有多少種放法;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中,a2=5,S5=40.等比數列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通項公式
(2)令cn=anbn,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側面PAD⊥底面ABCD,若點E,F分別是PC,BD的中點。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com