【題目】設(shè):實(shí)數(shù)滿足不等式,:函數(shù)無(wú)極值點(diǎn).
(1)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍;
(2)若“為真命題”是“”的必要不充分條件,求正整數(shù)的值.
【答案】(1)或.(2)
【解析】
(1)分別求得為真和為真時(shí)的范圍,由“”為假命題,“”為真命題可得與只有一個(gè)命題是真命題,進(jìn)而分類討論求解即可;
(2)由“”為真命題可得,解得不等式為,由必要不充分條件可得(兩個(gè)不等式不能同時(shí)取等號(hào)),進(jìn)而求解.
(1)若為真,則,解得;
若為真,則函數(shù)無(wú)極值點(diǎn),所以恒成立,
則,解得,
因?yàn)椤?/span>”為假命題,“”為真命題,
所以與只有一個(gè)命題是真命題,
若為真命題,為假命題,則,解得;
若為真命題,為假命題,則,解得.
綜上,實(shí)數(shù)的取值范圍為或.
(2)因?yàn)椤?/span>”為真命題,所以都為真命題,
所以,解得;
因?yàn)?/span>,所以,
因?yàn)楸匾怀浞謼l件,所以(兩個(gè)不等式不能同時(shí)取等號(hào)),
解得,
又因?yàn)?/span>,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是曲線上的點(diǎn),Q是曲線上的點(diǎn),曲線與曲線關(guān)于直線對(duì)稱,M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)寫出直線的方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)為圓上一動(dòng)點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹(shù)在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:
未使用新技術(shù)的10棵臍橙樹(shù)的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術(shù)后的10棵臍橙樹(shù)的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹(shù).
(1)估計(jì)該基地使用了新技術(shù)后,平均1棵臍橙樹(shù)的產(chǎn)量;
(2)估計(jì)該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?
(3)由于受市場(chǎng)影響,導(dǎo)致使用新技術(shù)后臍橙的售價(jià)由原來(lái)(未使用新技術(shù)時(shí))的每千克10元降為每千克9元,試估計(jì)該基地使用新技術(shù)后臍橙年總收入比原來(lái)增加的百分?jǐn)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的有( )
A.設(shè)正六棱錐的底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為,那么它的體積為
B.用斜二測(cè)法作△ABC的水平放置直觀圖得到邊長(zhǎng)為a的正三角形,則△ABC面積為
C.三個(gè)平面可以將空間分成4,6,7或者8個(gè)部分
D.已知四點(diǎn)不共面,則其中任意三點(diǎn)不共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請(qǐng)求出交點(diǎn)間的距離;若不相交,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足.
(1)若,證明:
(i)當(dāng)時(shí),有;
(ii)當(dāng)時(shí),有.
(2)若,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國(guó)好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場(chǎng)數(shù)與所對(duì)應(yīng)的人數(shù)表:
場(chǎng)數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場(chǎng)次不低于13場(chǎng)的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將收看該節(jié)目所有場(chǎng)次(14場(chǎng))的觀眾稱為“超級(jí)歌迷”,已知“超級(jí)歌迷”中有2名女性,若從“超級(jí)歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com