【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾收看該節(jié)目的場數與所對應的人數表:
場數 | 9 | 10 | 11 | 12 | 13 | 14 |
人數 | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據已知條件完成下面的2×2列聯表,并據此資料我們能否有95%的把握認為“歌迷”與性別有關?
非歌迷 | 歌迷 | 合計 | |
男 | |||
女 | |||
合計 |
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
【答案】(1)見解析;(2)
【解析】
試題分析:(1)由頻率分布直方圖可知,抽取的100名觀眾中,“體育迷”共有名.于是可得出2×2列聯表,然后根據列聯表中的數據代入計算公式計算可得的觀測值,最后由獨立性檢驗基本原理即可判斷出結果;(2)由頻率分布直方圖可知,“超級體育迷”有5名,于是可得出一切可能結果所組成的基本事件的總數,然后設A表示事件“任意選取的兩人中,至少有1名女性觀眾”,可得事件A包括的基本事件數,最后利用古典概型計算公式即可得出結果.
試題解析:(1)由統計表可知,在抽取的100人中,“歌迷”有25人,從而完成2×2列聯表如下:
非歌迷 | 歌迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
將2×2列聯表中的數據代入公式計算得:
,所以我們沒有95%的把握認為“歌迷”與性別有關.
(2)由統計表可知,“超級歌迷”有5人,其中2名女性,3名男性,設2名女性分別為,3名男性分別為,從中任取2人所包含的基本事件有:
共10個
用A表示“任意選取的兩人中,至少有1名女性觀眾”這一事件,A包含的基本事件有:共7個,所以.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數方程為 (為參數).
(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關系;
(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設曲線經過伸縮變換得到曲線,設曲線上任一點為,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幼兒園為訓練孩子的數字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各2張,讓孩子從盒子里任取3張卡片,按卡片上最大數字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數字
(1)求取出的3張卡片上的數字互不相同的概率;
(2)求隨機變量x的分布列;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:的焦點在x軸上,拋物線C:與橢圓E交于A,B兩點,直線AB過拋物線的焦點.
(1)求橢圓E的方程和離心率e的值;
(2)已知過點H(2,0)的直線l與拋物線C交于M、N兩點,又過M、N作拋物線C的切線l1,l2,使得l1⊥l2,問這樣的直線l是否存在?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】是指空氣中直徑小于或等于微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否相關,現采集到某城市周一至周五某一時間段車流量與的數據如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | |||||
的濃度(微克/立方米) |
(Ⅰ)根據上表數據,請在所給的坐標系中畫出散點圖;
(Ⅱ)根據上表數據,用最小二乘法求出關于的線性回歸方程;
(Ⅲ)若周六同一時間段的車流量是萬輛,試根據(Ⅱ)求出的線性回歸方程,預測此時的濃度為多少(保留整數)?
參考公式:由最小二乘法所得回歸直線的方程是:,
其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log3(9x+1)+mx為偶函數,g(x)= 為奇函數.
(Ⅰ)求m﹣n的值;
(Ⅱ)若函數y=f(x)與 的圖象有且只有一個交點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的公差為d,關于x的不等式 x2+(a1﹣ )x+c≥0的解集是[0,22],則使得數列{an}的前n項和大于零的最大的正整數n的值是( )
A.11
B.12
C.13
D.不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學選擇.已知包子數量不足僅夠一人食用,甲同學腸胃不好不會選擇蛋炒飯,則這5名同學不同的主食選擇方案種數為________.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有an= +2成立.
(1)記bn=log2an , 求數列{bn}的通項公式;
(2)設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com