【題目】已知函數(shù)f(x)=log3(9x+1)+mx為偶函數(shù),g(x)= 為奇函數(shù).
(Ⅰ)求m﹣n的值;
(Ⅱ)若函數(shù)y=f(x)與 的圖象有且只有一個交點,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)∵函數(shù)f(x)=log3(9x+1)+mx為偶函數(shù),∴f(﹣x)=f(x),則log3(9x+1)﹣mx=log3(9x+1)+mx,
即2mx=log3(9x+1)﹣log3(9x+1)
又右邊=log3 ﹣log3(9x+1)=log39x=log332x=﹣2x,
∴2mx=﹣2x,解得m=﹣1,
∵g(x)= 為奇函數(shù).
∴g(0)=0,則g(0)= =0,解得n=﹣1,
∴m﹣n=0,即m﹣n的值0;
(Ⅱ)由(Ⅰ)知:f(x)=log3(9x+1)﹣x,g(x)= ,
=log3 + ﹣4)+log3a
=log3(3x﹣4)+log3a=log3(3x﹣4)a,
∴y=log3(3x﹣4)a,且(a>0,3x>4)
即f(x)=log3(9x+1)﹣x與y=log3(3x﹣4)a的圖象有且只有一個交點,
∴l(xiāng)og3(9x+1)﹣x=log3(3x﹣4)a有且僅有一個解,
∵log3(9x+1)﹣x=log3(9x+1)﹣log33x= ,
∴3x+ =(3x﹣4)a有且僅有一解,
設t=3x , t>4,代入上式得, ,
則a= = ,令y=
則y′=
= ,
∵函數(shù)y=﹣2t2﹣t+2在(4,+∞)上遞減,且y<0,
∴y′<0,則函數(shù)y= 在(4,+∞)上遞減,
∴函數(shù)y= 在(4,+∞)上的值域是(0,+∞),
故實數(shù)a的取值范圍是a>0
【解析】(Ⅰ)根據題意和函數(shù)奇偶性的性質分別列出方程,求出m和n的值,即可求出m﹣n的值;(Ⅱ)由(I)和對數(shù)的運算性質化簡條件中的函數(shù)y,由對數(shù)函數(shù)的性質求出變量的范圍,利用換元法構造函數(shù),由導數(shù)與函數(shù)的單調性關系,判斷出函數(shù)的單調性,并求出函數(shù)的值域,從而求出實數(shù)a的取值范圍.
【考點精析】通過靈活運用函數(shù)奇偶性的性質,掌握在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用長為18 cm的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為21,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中裝有個紅球個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.

(1)用表示一次摸獎中獎的概率;

(2)若,設三次摸獎(每次摸獎后球放回)恰好有次中獎,求的數(shù)學期望

(3)設三次摸獎(每次摸獎后球放回)恰好有一次中獎的概率,當取何值時, 最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 的圖象向右平移 個單位長度后,所得圖象的一條對稱軸方程可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.

(1)根據已知條件完成下面的2×2列聯(lián)表,并據此資料我們能否有95%的把握認為“歌迷”與性別有關?

非歌迷

歌迷

合計

合計

(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c均為正數(shù).
(Ⅰ)求證:a2+b2+( 2≥4 ;
(Ⅱ)若a+4b+9c=1,求證: ≥100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

設函數(shù),其中

( I )若函數(shù)圖象恒過定點P,且點P的圖象上,求m的值;

(Ⅱ)時,設,討論的單調性;

(Ⅲ)(I)的條件下,設,曲線上是否存在兩點P、Q,

使△OPQ(O為原點)是以O為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在實數(shù)集上的函數(shù)f(x)=x2+ax(a為常數(shù)),g(x)= x3﹣bx+m(b為常數(shù)),若函數(shù)f(x)在x=1處的切線斜率為3,x= 是g(x)的一個極值點
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導數(shù),得到關于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導數(shù)研究其單調性可得

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故, .

(2)由(1)可知, ,

,可得,

,

,

時, , 單調遞減,且;

時, , 單調遞增;且,

所以上當單調遞減,在上單調遞增,且,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質的合理運用.

型】解答
束】
22

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.

查看答案和解析>>

同步練習冊答案