【題目】將正分割成個全等的小正三角形(圖1,圖2分別給出了的情形),在每個三角形的頂點各放置一個數(shù),使位于的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個數(shù)不少于3時)都分別依次成等差數(shù)列,若頂點處的三個數(shù)互不相同且和為1,記所有頂點上的數(shù)的和為,已知,則(用含的式子表達(dá))__________

【答案】

【解析】

作為一個填空題,根據(jù)等差數(shù)列性質(zhì),依次分析,數(shù)據(jù)特點,根據(jù)規(guī)律觀察歸納出

各點放的數(shù)用該點的字母表示,

由題,根據(jù)等差數(shù)列性質(zhì)可得:

當(dāng)時,,三個式子相加得:

;

當(dāng)時,,三個式子相加得:

由根據(jù)等差中項性質(zhì):,三個式子相加可得:,所以

當(dāng)時,依據(jù)等差數(shù)列等差中項性質(zhì):

,即,

同理,

所以,

由于每條與三邊平行的線上的點上數(shù)據(jù)成等差數(shù)列:

所以,

,

可以分析當(dāng)時,各邊上的點數(shù)據(jù)之和為,

內(nèi)部的點個數(shù)為,點上數(shù)據(jù)之和為,

所以,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)設(shè)點是線段(不含端點)上一動點,當(dāng)三棱錐的體積為1時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時間(第周)和市場占有率()的幾組相關(guān)數(shù)據(jù)如下表:

1)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)根據(jù)上述線性回歸方程,預(yù)測在第幾周,該款旗艦機(jī)型市場占有率將首次超過(最后結(jié)果精確到整數(shù)).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,點、分別在線段上,且,其中,連接,延長的延長線交于點,連接

(Ⅰ)求證:平面;

(Ⅱ)若時,求二面角的正弦值;

(Ⅲ)若直線與平面所成角的正弦值為時,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)建模課上,老師給大家?guī)砹艘粍t新聞:“2019816日上午,423米的東莞第一高樓民盈國貿(mào)中心2號樓(以下簡稱國貿(mào)中心)正式封頂,隨著最后一方混凝土澆筑到位,標(biāo)志著東莞最高樓紀(jì)錄誕生,由東莞本地航母級企業(yè)民盈集團(tuán)刷新了東莞天際線,比之前的東莞第一高樓臺商大廈高出134.”在同學(xué)們的驚嘆中,老師提出了問題:國貿(mào)中心真有這么高嗎?我們能否運(yùn)用所學(xué)知識測量驗證一下?一周后,兩個興趣小組分享了他們各自的測量方案.

第一小組采用的是兩次測角法:他們在國貿(mào)中心隔壁的會展中心廣場上的點測得國貿(mào)中心頂部的仰角為,正對國貿(mào)中心前進(jìn)了米后,到達(dá)點,在點測得國貿(mào)中心頂部的仰角為,然后計算出國貿(mào)中心的高度(如圖).

第二小組采用的是鏡面反射法:在國貿(mào)中心后面的新世紀(jì)豪園一幢11層樓(與國貿(mào)中心處于同一水平面,每層約3米)樓頂天臺上,進(jìn)行兩個操作步驟:①將平面鏡置于天臺地面上,人后退至從鏡中能看到國貿(mào)大廈的頂部位置,測量出人與鏡子的距離為米;②正對國貿(mào)中心,將鏡子前移米,重復(fù)①中的操作,測量出人與鏡子的距離為.然后計算出國貿(mào)中心的高度(如圖).

實際操作中,第一小組測得米,,,最終算得國貿(mào)中心高度為;第二小組測得米,米,米,最終算得國貿(mào)中心高度為;假設(shè)他們測量者的眼高都為.

1)請你用所學(xué)知識幫兩個小組完成計算(參考數(shù)據(jù):,,答案保留整數(shù)結(jié)果);

2)你認(rèn)為哪個小組的方案更好,說出你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

2)已知函數(shù),,如果函數(shù)有兩個極值點、,求證:.(參考數(shù)據(jù):,為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軍訓(xùn)時,甲、乙兩名同學(xué)進(jìn)行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結(jié)論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個結(jié)論中,正確結(jié)論的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,,分別為棱、的中點,為棱上的一點,且,設(shè)點的中點,則點到平面的距離為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案