【題目】1)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

2)已知函數(shù),,如果函數(shù)有兩個極值點、,求證:.(參考數(shù)據(jù):,,為自然對數(shù)的底數(shù))

【答案】1;(2)證明見解析.

【解析】

1)構(gòu)造函數(shù),其中,可得,求出函數(shù)的導(dǎo)數(shù),構(gòu)造函數(shù),分兩種情況討論,結(jié)合可求出實數(shù)的取值范圍;

2)由題意得出,變形得,利用基本不等式得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,證明出,結(jié)合單調(diào)性可得出.

1)令,其中,且有

,

,則.

①當(dāng)時,即當(dāng)時,對任意的,,即,

所以,函數(shù)在區(qū)間上為增函數(shù),當(dāng)時,,合乎題意;

②當(dāng)時,則.

i)當(dāng)時,對任意的,即

所以,函數(shù)在區(qū)間上為增函數(shù),當(dāng)時,,合乎題意;

ii)當(dāng)時,設(shè)函數(shù)的兩個極值點分別為、,設(shè),

由韋達定理得,則必有,

當(dāng)時,,當(dāng)時,.

所以,,不合乎題意.

綜上所述,實數(shù)的取值范圍是;

2)若

有兩個不同的零點、.

由題意,相加有,①

相減有,從而,

代入①有,

不妨設(shè),則,由(1)有.

,

所以,即,

設(shè),則,單調(diào)遞增,

,,因此.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前n項和為,,公差為

,求數(shù)列的通項公式;

是否存在d,n使成立?若存在,試找出所有滿足條件的d,n的值,并求出數(shù)列的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正分割成個全等的小正三角形(圖1,圖2分別給出了的情形),在每個三角形的頂點各放置一個數(shù),使位于的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個數(shù)不少于3時)都分別依次成等差數(shù)列,若頂點處的三個數(shù)互不相同且和為1,記所有頂點上的數(shù)的和為,已知,則(用含的式子表達)__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 )的焦點為 , 在拋物線 ,直線 與拋物線 交于 兩點, 為坐標原點.

(1)求拋物線 的方程

(2)求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時,函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時,的最小值為;

當(dāng)時,的最小值為;

當(dāng)時,的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為,為坐標原點,點到直線的距離為,為等腰直角三角形.

(1)求橢圓的標準方程;

(2)直線與橢圓交于,兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級200名學(xué)生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶外暴露時間(單位:小時)

不少于28小時

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計戶外暴露時間不少于28小時的4名學(xué)生中,隨機抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?

近視

不近視

足夠的戶外暴露時間

不足夠的戶外暴露時間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

同步練習(xí)冊答案