【題目】已知甲同學(xué)每投籃一次,投進(jìn)的概率均為.
(1)求甲同學(xué)投籃4次,恰有3次投進(jìn)的概率;
(2)甲同學(xué)玩一個(gè)投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設(shè)甲同學(xué)在一次游戲中投籃的次數(shù)為,求的分布列.
【答案】(1);(2)分布列見(jiàn)解析.
【解析】
(1)由題意可知:甲同學(xué)投籃4次,投進(jìn)的次數(shù)服從二項(xiàng)分布,根據(jù)二項(xiàng)分布的特點(diǎn),可以求出甲同學(xué)投籃4次,恰有3次投進(jìn)的概率;
(2)根據(jù)題意可以求出的可能取值為,分別求出相應(yīng)取值時(shí)概率的大小,然后列出分布列.
(1)由題意可知:甲同學(xué)投籃4次,投進(jìn)的次數(shù)服從二項(xiàng)分布,所以甲同學(xué)投籃4次,恰有3次投進(jìn)的概率為;
(2)由題意可知的可能取值為,
,
,
,
,
,所以的分布列為:
2 | 3 | 4 | 5 | 6 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是等差數(shù)列,是等比數(shù)列,,.
(1)求和的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,過(guò)拋物線(xiàn)上一點(diǎn)作拋物線(xiàn)的切線(xiàn),交軸于點(diǎn).
(1)判斷的形狀;
(2) 若兩點(diǎn)在拋物線(xiàn)上,點(diǎn)滿(mǎn)足,若拋物線(xiàn)上存在異于的點(diǎn),使得經(jīng)過(guò)三點(diǎn)的圓與拋物線(xiàn)在點(diǎn)處的有相同的切線(xiàn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是20個(gè)國(guó)家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.
國(guó)家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | 國(guó)家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | |
A | 10330000 | 7.4 | K | 480000 | 2.0 | |
B | 5300000 | 16.6 | L | 480000 | 7.5 | |
C | 3740000 | 7.3 | M | 470000 | 3.9 | |
D | 2070000 | 1.7 | N | 410000 | 5.3 | |
E | 1800000 | 12.6 | O | 390000 | 16.9 | |
F | 1360000 | 10.7 | P | 390000 | 6.4 | |
G | 840000 | 10.2 | Q | 370000 | 5.7 | |
H | 630000 | 12.7 | R | 330000 | 6.2 | |
I | 550000 | 15.7 | S | 320000 | 6.2 | |
J | 510000 | 2.6 | T | 490000 | 16.6 |
(1)這20個(gè)國(guó)家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?
(2)針對(duì)這20個(gè)國(guó)家和地區(qū),請(qǐng)你找出二氧化碳排放總量較少的前15%的國(guó)家和地區(qū).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】淄博七中、臨淄中學(xué)為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由淄博七中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為,畫(huà)面的上、下各留空白,左、右各留空白.如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求的圖象在處的切線(xiàn)方程;
(Ⅱ)若函數(shù)有兩個(gè)不同零點(diǎn), ,且,求證: ,其中是的導(dǎo)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線(xiàn)被橢圓C截得的線(xiàn)段長(zhǎng)為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)M(0,-1),直線(xiàn)l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線(xiàn)MA的斜率為,直線(xiàn)MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)生產(chǎn)一種汽車(chē)的元件,該元件是經(jīng)過(guò)、、三道工序加工而成的,、、三道工序加工的元件合格率分別為、、.已知每道工序的加工都相互獨(dú)立,三道工序加工都合格的元件為一等品;恰有兩道工序加工合格的元件為二等品;其它的為廢品,不進(jìn)入市場(chǎng).
(Ⅰ)生產(chǎn)一個(gè)元件,求該元件為二等品的概率;
(Ⅱ)若從該工廠(chǎng)生產(chǎn)的這種元件中任意取出3個(gè)元件進(jìn)行檢測(cè),求至少有2個(gè)元件是一等品的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com