【題目】己知四棱錐中, 平面,底面是菱形,且. , 、的中點分別為, .
(Ⅰ)求證.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在一點,使得平行于平面?若存在,指出在上的位置并給予證明,若不存在,請說明理由.
【答案】()見解析()()是中點.
【解析】試題分析:(1)要證BC⊥PE,要轉(zhuǎn)化為證明BC⊥平面PAE;
(2)以為原點,分別以, , 為軸, 軸, 軸建立空間直角坐標(biāo)系,進行計算即可;
(3)設(shè), 利用與平面的一個法向量為垂直,可求得t值,進而得出是中點.
試題解析:
()證明:連結(jié), .
∵平面, 平面,
∴.
又∵底面是菱形, , ,
∴是正三角形.
∵是的中點,
∴.
又∵, 平面, 平面,
∴平面,
∴.
()由()得,由可得.
又∵底面,∴, .
∴以為原點,分別以, , 為軸, 軸, 軸建立空間直角坐標(biāo)系,如圖所示,則, , , , , , .
∵平面,
∴平面的法向量為.
又∵, .
設(shè)平面的一個法向量,則:
,即,令,則, ,
∴.
∴.
∵二面角是銳角,
∴二面角的余弦值為.
()是線段上的一點,設(shè).
∵,∴.
又∵, .
設(shè)平面的一個法向量為,則:
,即,∴,
∵平面,∴, ,即,
解得.
故線段上存在一點,使得平行于平面, 是中點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為,以極點為原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線的參數(shù)方程為,( 為參數(shù))
(1)求曲線的參數(shù)方程和曲線的普通方程;
(2)求曲線上的點到曲線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線: (為參數(shù))和定點, , 是此圓錐曲線的左、右焦點.
(1)以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過且與直線垂直的直線交此圓錐曲線于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (),且曲線在點處的切線方程為.
(1)求實數(shù)的值及函數(shù)的最大值;
(2)當(dāng)時,記函數(shù)的最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,過右焦點且垂直于軸的直線截橢圓所得弦長是1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點分別是橢圓的左,右頂點,過點的直線與橢圓交于兩點(與不重合),證明:直線和直線交點的橫坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C1的參數(shù)方程為 (α為參數(shù)),以原點O為極點,x軸的正半軸為級軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程;
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點,求點P到曲線C2上的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點M的坐標(biāo)為,曲線C的方程為;以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線l經(jīng)過點M.
(I)求直線l和曲線C的直角坐標(biāo)方程:
(II)若P為曲線C上任意一點,直線l和曲線C相交于A,B兩點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com