【題目】已知橢圓過點,過右焦點且垂直于軸的直線截橢圓所得弦長是1.
(1)求橢圓的標準方程;
(2)設(shè)點分別是橢圓的左,右頂點,過點的直線與橢圓交于兩點(與不重合),證明:直線和直線交點的橫坐標為定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在, , 上的奇函數(shù),當, 時, ().
(Ⅰ)求的解析式;
(Ⅱ)設(shè), , ,求證:當時, 恒成立;
(Ⅲ)是否存在實數(shù),使得當, 時, 的最小值是?如果存在,
求出實數(shù)的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 分別是的中點,底面是邊長為2的正方形, ,且平面平面.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知四棱錐中, 平面,底面是菱形,且. , 、的中點分別為, .
(Ⅰ)求證.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在一點,使得平行于平面?若存在,指出在上的位置并給予證明,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當時, ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點,是中點.
(Ⅰ)當與垂直時,求證:過圓心;
(Ⅱ)當時,求直線的方程;
(Ⅲ)設(shè),試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,M,N分別為的中點.
(1)證明:直線MN//平面CAB1;
(2)若四邊形ABB1A1是菱形,且, ,求平面和平面所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù),向量, ,經(jīng)過點,以為方向向量的直線與經(jīng)過點,以為方向向量的直線交于點,其中.
()求點的軌跡方程,并指出軌跡.
()若點,當時, 為軌跡上任意一點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com