【題目】如圖,在四棱錐中, 分別是的中點,底面是邊長為2的正方形, ,且平面平面.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】在 中,內(nèi)角的對邊分別為,已知,且, .
(1)求的面積.
(2)已知等差數(shù)列的公差不為零,若,且成等比數(shù)列,求的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列為遞增的等比數(shù)列, ,
數(shù)列滿足.
(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求證: 是等差數(shù)列;
(Ⅲ)設數(shù)列滿足,且數(shù)列的前項和,并求使得對任意都成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一,他的杰作《九章算術注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學遺產(chǎn). 《九章算術·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),則(ⅰ)____________.
(ⅱ)給出下列三個命題:①函數(shù)是偶函數(shù);②存在,使得以點為頂點的三角形是等腰三角形;③存在,使得以點為頂點的四邊形為菱形.
其中,所有真命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,過右焦點且垂直于軸的直線截橢圓所得弦長是1.
(1)求橢圓的標準方程;
(2)設點分別是橢圓的左,右頂點,過點的直線與橢圓交于兩點(與不重合),證明:直線和直線交點的橫坐標為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,值域為,即,若,則稱在上封閉.
(1)分別判斷函數(shù), 在上是否封閉,說明理由;
(2)函數(shù)的定義域為,且存在反函數(shù),若函數(shù)在上封閉,且函數(shù)在上也封閉,求實數(shù)的取值范圍;
(3)已知函數(shù)的定義域為,對任意,若,有恒成立,則稱在上是單射,已知函數(shù)在上封閉且單射,并且滿足 ,其中(),,證明:存在的真子集,
,使得在所有()上封閉.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com