【題目】已知函數(shù)的定義域為,值域為,即,若,則稱在上封閉.
(1)分別判斷函數(shù), 在上是否封閉,說明理由;
(2)函數(shù)的定義域為,且存在反函數(shù),若函數(shù)在上封閉,且函數(shù)在上也封閉,求實數(shù)的取值范圍;
(3)已知函數(shù)的定義域為,對任意,若,有恒成立,則稱在上是單射,已知函數(shù)在上封閉且單射,并且滿足 ,其中(),,證明:存在的真子集,
,使得在所有()上封閉.
【答案】(1)見解析;(2);(3)見解析.
【解析】試題分析:(1)根據在上封閉的定義,分別求出函數(shù), 在上的值域,即可判斷是否封閉;(2)函數(shù)在D上封閉,則.函數(shù)在上封閉,則,得到: .從而問題轉化為: 在兩不等實根.(3)分兩種情況: 和,第一種情況顯然不成立,第二種情況,因為是單射,因此取一個,則是唯一的使得的根,換句話說考慮到,即,因為是單射,則這樣就有了.接著令,并重復上述論證證明..
試題解析:
(1)因為函數(shù)的定義域為,值域為,(取一個具體例子也可),
所以在上不封閉.
在上封閉
(2)函數(shù)在D上封閉,則.函數(shù)在上封閉,則,
得到: .
在單調遞增.
則 在兩不等實根.
,
故,解得.
另解: 在兩不等實根.令
在有兩個不等根,畫圖,由數(shù)形結合可知,
解得.
(3)如果,則,與題干矛盾.
因此,取,則.
接下來證明,因為是單射,因此取一個,
則是唯一的使得的根,換句話說
考慮到,即,
因為是單射,則
這樣就有了.
接著令,并重復上述論證證明..
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經濟的快速發(fā)展,民用汽車的保有量也迅速增長.機動車保有量的發(fā)展影響到環(huán)境質量、交通安全、道路建設等諸多方面.在我國,尤其是大中型城市,機動車已成為城市空氣污染的重要來源.因此,合理預測機動車保有量是未來進行機動車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據“云南省某市國民經濟和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據,該市機動車保有量數(shù)據如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
機動車保有量(萬輛) | 169 | 181 | 196 | 215 | 230 |
(1)在圖所給的坐標系中作出數(shù)據對應的散點圖;
(2)建立機動車保有量關于年份代碼的回歸方程;
(3)按照當前的變化趨勢,預測2017年該市機動車保有量.
附注:回歸直線方程中的斜率和截距的最小二乘估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 分別是的中點,底面是邊長為2的正方形, ,且平面平面.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當時, ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點,是中點.
(Ⅰ)當與垂直時,求證:過圓心;
(Ⅱ)當時,求直線的方程;
(Ⅲ)設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,M,N分別為的中點.
(1)證明:直線MN//平面CAB1;
(2)若四邊形ABB1A1是菱形,且, ,求平面和平面所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩神坐標系中的長度單位相同.已知曲線的極坐標方程為, .
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com