如圖,橢圓的中心在原點,其左焦點
與拋物線
的焦點重合,過
的直線
與橢圓交于
A、
B兩點,與拋物線交于
C、
D兩點.當(dāng)直線
與
x軸垂直時,
.
(Ⅰ)求橢圓的方程;
(II)求過點O、
,并且與橢圓的左準線相切的圓的方程;
(Ⅲ)求
的最大值和最小值.
(Ⅰ)由拋物線方程,得焦點
.
設(shè)橢圓的方程:
.
解方程組
得
C(-1,2),
D(1,-2).
由于拋物線、橢圓都關(guān)于
x軸對稱,
∴
,
,∴
. …………2分
∴
又
,
因此,
,解得
并推得
.
故橢圓的方程為
. …………4分
(Ⅱ)
,
圓過點O、
,
圓心M在直線
上.
設(shè)
則圓半徑,由于圓與橢圓的左準線相切,
∴
由
得
解得
所求圓的方程為
…………………………8分
(Ⅲ)由
①若
垂直于
軸,則
,
,
…………………………………………9分
②若
與
軸不垂直,設(shè)直線
的斜率為
,則直線
的方程為
由
得
,
方程有兩個不等的實數(shù)根.
設(shè)
,
.
,
………………………………11分
=
,所以當(dāng)直線
垂于
軸時,
取得最大值
當(dāng)直線
與
軸重合時,
取得最小值
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題15分)已知拋物線
,過點
的直線
交拋物線
于
兩點,且
.
(1)求拋物線
的方程;
(2)過點
作
軸的平行線與直線
相交于點
,若
是等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分,(Ⅰ)小問5分,(Ⅱ)小問7分.)
如題(21)圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)d為點P到直線l:
的距離,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的一個焦點F
1(0,-2
),對應(yīng)的準線方程為y=-
,且離心率e滿足:
,e,
成等比數(shù)列.
(1)求橢圓方程;
(2)是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
平分.若存在,求出l的傾斜角的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)過點M(1,1)作直線與拋物線
交于A、B兩點,該拋物線在A、B兩點處的兩條切線交于點P。 (I)求點P的軌跡方程; (II)求△ABP的面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在同一坐標系中,方程
a2x2+
b2y2=1與
ax+
by2=0(
a>
b>0)的曲線大致是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的左、右焦點分別為
、
,其中
也是拋物線
的焦點,
是
與
在第一象限的交點,且
.(Ⅰ)求橢圓
的方程;(Ⅱ)已知菱形
的頂點
A﹑
C在橢圓
上,頂點
B﹑
C在直線
上,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(22) (本小題滿分12分)(注意:在試題卷上作答無效)如圖,已知拋物線
與圓
相交于A、B、C、D四個點。
(Ⅰ)求r的取值范圍
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)若橢圓
:
的離心率等于
,拋物線
:
的焦點在橢圓的頂點上。(Ⅰ)求拋物線
的方程;
(Ⅱ)求
的直線
與拋物線
交
、
兩點,又過
、
作拋物線
的切線
、
,當(dāng)
時,求直線
的方程;
查看答案和解析>>