【題目】如圖,在四棱錐中,,分別為的中點(diǎn),.
(1)求證:平面;
(2)求直線與底面所成角的大小
【答案】(1)證明見解析;(2) .
【解析】
(1) 取線段的中點(diǎn),連接,再證明四邊形為平行四邊形即可.
(2) 連接,取的中點(diǎn),連接再證明是與底面所成的角.再利用構(gòu)造直角三角形的方法求解各邊長(zhǎng)進(jìn)而求得的大小即可.
(1)證明:取線段的中點(diǎn),連接.
因?yàn)?/span>是的中位線,
所以.
又因?yàn)?/span>,
所以.
所以四邊形為平行四邊形,
所以.
因?yàn)?/span>平面平面.
所以平面.
(2)解:連接,取的中點(diǎn),連接.
易知,
易知是的中位線,
所以且.
因?yàn)?/span>為中點(diǎn),,又,所以.
因?yàn)?/span>,所以.
又平面,
所以底面.
所以是與底面所成的角.
易求等腰梯形的高為
所以.
在中,由.得.
故直線與底面所成角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).
(1)求的方程;
(2)直線經(jīng)過的焦點(diǎn)且不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:經(jīng)過點(diǎn),過點(diǎn)作直線交于,兩點(diǎn),、分別交直線于,兩點(diǎn).
(1)求的方程和焦點(diǎn)坐標(biāo);
(2)設(shè),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線、與平面、滿足,,,則下列命題中正確的是( )
A.是的充分不必要條件
B.是的充要條件
C.設(shè),則是的必要不充分條件
D.設(shè),則是的既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,圓:,直線:與拋物線相切于點(diǎn),且與圓相切于點(diǎn).
(1)當(dāng),時(shí),求直線方程與拋物線的方程;
(2)設(shè)為拋物線的焦點(diǎn),,的面積分別為,,當(dāng)取得最大值時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)僅有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱的所有棱長(zhǎng)相等,為的中點(diǎn).
(1)求證:平面;
(2)當(dāng)是的中點(diǎn)時(shí),求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com