【題目】已知拋物線y2=4x的焦點為F,A,B為拋物線上兩點,若O為坐標(biāo)原點,則△AOB的面積為( )

A. B. C. D.

【答案】B

【解析】

根據(jù)拋物線的標(biāo)準(zhǔn)方程及幾何性質(zhì),求出直線AB的方程,聯(lián)立方程組,求解的坐標(biāo),進(jìn)而得到,在由點到直線的距離公式,求得三角形的高,即可求解三角形的面積.

由拋物線的對稱性,不妨設(shè)直線AB的斜率為正.如圖所示,

設(shè)拋物線的準(zhǔn)線為l,過點AADl,lD,過點BBCl,lC,

過點BBEAD,ADE.由已知條件及拋物線的定義,

不難求出,|AB|=2|AE|,所以直線AB的傾斜角為60°.

易知F(1,0),故直線AB的方程為y=(x-1).

聯(lián)立直線AB的方程與拋物線的方程可求得A(3,2),B,

所以|AB|==.又原點到直線AB的距離d=,

所以SAOB=××=.故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計如圖所示的四個電路圖,條件p:“開關(guān)S閉合”;條件q:“燈泡L亮”,則p是q的充分不必要條件的電路圖是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù),求實數(shù)m的值,使得復(fù)數(shù)z分別是:

(1)0;(2)虛數(shù);(3)純虛數(shù);(4)復(fù)平面內(nèi)第二、四象限角平分線上的點對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)存在復(fù)數(shù)z同時滿足下列兩個條件:

①復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點位于第二象限;

②z·+2iz=8+ai(a∈R).

求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若根據(jù)10名兒童的年齡x(歲)和體重y(kg)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報體重的回歸方程是=2x+7.已知這10名兒童的年齡分別是2歲、3歲、3歲、5歲、2歲、6歲、7歲、3歲、4歲、5歲,則這10名兒童的平均體重大約是(  )

A. 14 kg B. 15 kg

C. 16 kg D. 17 kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.

(1)若直線l的斜率為 ,求 的值;
(2)若 ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài),對其下一個階段的學(xué)習(xí)提出指導(dǎo)性建議,某老師現(xiàn)對他前7次考試的數(shù)學(xué)成績x、物理成績y進(jìn)行分析.下面是該學(xué)生7次考試的成績.

(1)他的數(shù)學(xué)成績與物理成績哪個更穩(wěn)定?請給出你的證明.

(2)已知該學(xué)生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該學(xué)生的物理成績達(dá)到115分,請你估計他的數(shù)學(xué)成績大約是多少?并請你根據(jù)物理成績與數(shù)學(xué)成績的相關(guān)性,給出該學(xué)生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐P﹣ABC中,D為AB的中點.

(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.

查看答案和解析>>

同步練習(xí)冊答案