【題目】設(shè)存在復(fù)數(shù)z同時(shí)滿足下列兩個(gè)條件:

①?gòu)?fù)數(shù)z在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于第二象限;

②z·+2iz=8+ai(a∈R).

求a的取值范圍.

【答案】[-6,0)

【解析】

設(shè)z=x+yi(x,y∈R),由①得x<0,y>0. 由②得x2+y2+2i(x+yi)=8+ai,

由此得出x2+(y-1)2=9表示以(0,1)為圓心,3為半徑的圓,所以-3≤x<0,由得出a的取值范圍。

設(shè)z=x+yi(x,y∈R),由①得x<0,y>0.由②得x2+y2+2i(x+yi)=8+ai,

即x2+y2-2y+2xi=8+ai,由復(fù)數(shù)相等的充要條件,得 因?yàn)閤2+(y-1)2=9表示以(0,1)為圓心,3為半徑的圓,

又x<0,所以-3≤x<0,所以-6≤2x<0,即-6≤a<0,所以a的取值范圍是[-6,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣5:不等式選講
設(shè)函數(shù)f(x)=|2x﹣4|+|x+2|
(1)求函數(shù)y=f(x)的最小值;
(2)若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①將A,B,C三種個(gè)體按3∶1∶2的比例分層抽樣調(diào)查,若抽取的A種個(gè)體有9個(gè),則樣本容量為30;

②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;

③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,那么這兩組數(shù)據(jù)中比較穩(wěn)定的是甲;

④已知具有相關(guān)關(guān)系的兩個(gè)變量滿足的回歸直線方程為=1-2x,則x每增加1個(gè)單位,y平均減少2個(gè)單位;

⑤統(tǒng)計(jì)的10個(gè)樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在[114.5,124.5)內(nèi)的頻率為0.4.

其中是真命題的為(  )

A. ①②④ B. ②④⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)數(shù)

(1)若z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限,求m的取值范圍;

(2)若z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線xy-1=0上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a<b<c).已知向量 =(a,c), =(cosC,cosA)滿足 = (a+c).
(1)求證:a+c=2b;
(2)若2csinA﹣ a=0,且c﹣a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過(guò)點(diǎn)(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域?yàn)镈,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動(dòng)點(diǎn).設(shè)a>0,試問(wèn)當(dāng)函數(shù)f(x)有兩個(gè)不同的不動(dòng)點(diǎn)時(shí),這兩個(gè)不動(dòng)點(diǎn)能否同時(shí)也是函數(shù)f(x)的極值點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4x的焦點(diǎn)為F,A,B為拋物線上兩點(diǎn),若O為坐標(biāo)原點(diǎn),則△AOB的面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1:(a>b>0)的離心率為,x軸被曲線C2:y=x2-b截得的線段長(zhǎng)度等于C1的短軸長(zhǎng).已知C2y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線lC2相交于點(diǎn)A,B,直線MA,MB分別與C1相交于點(diǎn)D,E.

(1)C1,C2的方程;

(2)求證:MA⊥MB;

(3)△MAB,△MDE的面積分別為S1,S2,,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點(diǎn) 分別為, 的中點(diǎn),且 .

(1)證明: 平面;

(2)設(shè)直線與平面所成角為,當(dāng)內(nèi)變化時(shí),求二面角的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案