【題目】設(shè),函數(shù)

(1)若,求曲線處的切線方程

(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍

【答案】(1) ;(2) .

【解析】

試題分析:(1)求函數(shù)的導(dǎo)數(shù)得,當(dāng)時(shí),,由點(diǎn)斜式寫(xiě)出切線方程即可;(2)當(dāng)時(shí),由可知函數(shù)有零點(diǎn),不符合題意;當(dāng)時(shí),函數(shù)有唯一零點(diǎn)有唯一零點(diǎn),不符合題意;當(dāng)時(shí),由單調(diào)性可知函數(shù)有最大值,由函數(shù)的最大值小于零列出不等式,解之即可.

試題解析: (1)區(qū)間,

當(dāng)時(shí),,則切線方程為,

(2)時(shí),是區(qū)間上的增函數(shù),

,

函數(shù)在區(qū)間有唯一零點(diǎn);

,有唯一零點(diǎn)

,,,

在區(qū)間,函數(shù)是增函數(shù)

在區(qū)間,,函數(shù)是減函數(shù);

故在區(qū)間的極大值為,

由于無(wú)零點(diǎn),須使,解得,

故所求實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對(duì)任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對(duì)任意的,都有關(guān)于對(duì)稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)曲線C1=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )

A. B. -1 C. +1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

女性用戶:

分值區(qū)間

頻數(shù)

20

40

80

50

10

分值區(qū)間

頻數(shù)

45

75

90

60

30

男性用戶:

(1)如果評(píng)分不低于70分,就表示該用戶對(duì)手機(jī)認(rèn)可,否則就表示不認(rèn)可,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對(duì)手機(jī)的認(rèn)可有關(guān):

女性用戶

男性用戶

合計(jì)

認(rèn)可手機(jī)

不認(rèn)可手機(jī)

合計(jì)

附:

0.05

0.01

3.841

6635

(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】沭陽(yáng)縣某水果店銷售某種水果,經(jīng)市場(chǎng)調(diào)查,該水果每日的銷售量(單位:千克)與銷售價(jià)格近似滿足關(guān)系式,其中為常數(shù),已知銷售價(jià)格定為千克時(shí),每日可銷售出該水果千克.

(1)求實(shí)數(shù)的值;

(2)若該水果的成本價(jià)格為千克,要使得該水果店每日銷售該水果獲得最大利潤(rùn),請(qǐng)你確定銷售價(jià)格的值,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求的最小值;

(2)記的最小值為,已知函數(shù),若對(duì)于任意的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2 (a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln xax(a是實(shí)數(shù)),g(x)=+1.

(1)當(dāng)a=2時(shí),求函數(shù)f(x)在定義域上的最值;

(2)若函數(shù)f(x)在[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;

(3)是否存在正實(shí)數(shù)a滿足:對(duì)于任意x1∈[1,2],總存在x2∈[1,2],使得f(x1)=g(x2)成立? 若存在,求出a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ADBCAD=AB=DC=BC=1,EPC的中點(diǎn),平面PAC平面ABCD

1)證明:ED平面PAB

2)若PC=2,PA=,求二面角APCD的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案