【題目】過(guò)曲線(xiàn)C1=1(a>0,b>0)的左焦點(diǎn)F1作曲線(xiàn)C2:x2+y2=a2的切線(xiàn),設(shè)切點(diǎn)為M,直線(xiàn)F1M交曲線(xiàn)C3:y2=2px(p>0)于點(diǎn)N,其中曲線(xiàn)C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線(xiàn)C1的離心率為( )

A. B. -1 C. +1 D.

【答案】D

【解析】設(shè)雙曲線(xiàn)的右焦點(diǎn)為F2,則F2的坐標(biāo)為(c,0).

由題意知F2也是C3的焦點(diǎn),所以C3:y2=4cx.連接OM,NF2,因?yàn)镺為F1F2的中點(diǎn),M為F1N的中點(diǎn),所以O(shè)M為△NF1F2的中位線(xiàn),所以O(shè)M∥NF2.因?yàn)閨OM|=a,所以|NF2|=2a.又NF2⊥NF1,|F1F2|=2c,所以|NF1|=2b.設(shè)N(x,y),則由拋物線(xiàn)的定義可得|NF2|=x+c=2a,所以x=2a-c.過(guò)點(diǎn)F1作x軸的垂線(xiàn),點(diǎn)N到該垂線(xiàn)的距離為2a,由y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2),得e2-e-1=0,解得e= (負(fù)值舍去),故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(I), 恒成立,求常數(shù)的取值范.

已知非零常數(shù)、滿(mǎn)足,求不等式的解集;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)以為半徑的扇形池塘,在、上分別取點(diǎn)、,作、分別交弧于點(diǎn)、,且,現(xiàn)用漁網(wǎng)沿著、、將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知, , ).

(1)若區(qū)域Ⅱ的總面積為,求的值;

(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬(wàn)元、40萬(wàn)元、20萬(wàn)元,試問(wèn):當(dāng)為多少時(shí),年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)滿(mǎn)足下列條件:

對(duì)恒成立;對(duì)恒成立.

(1)求的值; (2)求的解析式;

(3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),當(dāng)時(shí), 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線(xiàn)l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).

(1)求k的取值范圍;

(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知橢圓中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在上,分別在其左、右焦點(diǎn),橢圓上任意一點(diǎn),且最大值為1,最小

(1)求橢圓方程;

(2)設(shè)橢圓右頂點(diǎn),直線(xiàn)與橢圓交于兩點(diǎn)的任意一條直線(xiàn),若,證明直線(xiàn)過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為/單位時(shí)間),每單位時(shí)間的用氧量為升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為升),返回水面的平均速度為/單位時(shí)間),每單位時(shí)間用氧量為升),記該潛水員在此次考察活動(dòng)中的總用氧量為升).

(1關(guān)函數(shù)關(guān)系式;

(2,求當(dāng)下潛速度什么時(shí),總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù)

(1)若,求曲線(xiàn)處的切線(xiàn)方程

(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知右焦點(diǎn)橢圓過(guò)點(diǎn),且橢圓關(guān)于直線(xiàn)對(duì)稱(chēng)的圖形過(guò)坐標(biāo)原點(diǎn).

1)求橢圓方程;

(2)過(guò)點(diǎn)不垂直于的直線(xiàn)橢圓,兩點(diǎn),點(diǎn)關(guān)的對(duì)稱(chēng)點(diǎn)為,證明直線(xiàn)的交點(diǎn)為.

查看答案和解析>>

同步練習(xí)冊(cè)答案