【題目】如圖,,,,是曲線上的點,,,,軸正半軸上的點,且,,,均為斜邊在軸上的等腰直角三角形(為坐標原點).

1)寫出、之間的等量關系,以及、之間的等量關系;

2)猜測并證明數(shù)列的通項公式;

3)設,集合,,若,求實常數(shù)的取值范圍.

【答案】1,;(2,證明見解析;(3.

【解析】

1)依題意利用等腰直角三角形的性質(zhì)可得,,.

2)由,即,猜測,再用數(shù)學歸納法進行證明.

3)用裂項法求得的值為,由函數(shù)在區(qū)間上單調(diào)遞增,且,求得,再由,由,有,或,由此求得實常數(shù)的取值范圍.

1)依題意利用等腰直角三角形的性質(zhì)可得,,.

2)由

,猜測.

證明:①當時,可求得,命題成立.

②假設當時,命題成立,即有

則當時,由歸納假設及

,

解得,(不合題意,舍去),

即當時,命題成立.

綜上所述,對所有,.

3

.

因為函數(shù)在區(qū)間上單調(diào)遞增,且,

所以.

,

,有,或,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其中,,數(shù)列{bn}滿足b1=2,bn+1=2bn

1)求數(shù)列的通項公式;

2)是否存在自然數(shù),使得對于任意,,有恒成立?若存在,求出的最小值;

3)若數(shù)列滿足,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小學為了解四年級學生的家庭作業(yè)用時情況,從本校四年級隨機抽取了一批學生進行調(diào)查,并繪制了學生作業(yè)用時的頻率分布直方圖,如圖所示.

(1)估算這批學生的作業(yè)平均用時情況;

(2)作業(yè)用時不能完全反映學生學業(yè)負擔情況,這與學生自身的學習習慣有很大關系如果用時四十分鐘之內(nèi)評價為優(yōu)異,一個小時以上為一般,其它評價為良好.現(xiàn)從優(yōu)異和良好的學生里面用分層抽樣的方法抽取300人,其中女生有90人(優(yōu)異20人).請完成列聯(lián)表,并根據(jù)列聯(lián)表分析能否在犯錯誤的概率不超過0.05的前提下認為學習習慣與性別有關系?

男生

女生

合計

良好

優(yōu)異

合計

附:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著計算機的出現(xiàn),圖標被賦予了新的含義,又有了新的用武之地.在計算機應用領域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,

1)若直線過定點,且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若對于任意的,當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各名,將男性、女性使用微信的時間分成組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)女性頻率分布直方圖估計女性使用微信的平均時間;

(2)若每天玩微信超過小時的用戶列為微信控,否則稱其為非微信控,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認為微信控性別有關?

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4

1)求橢圓的方程;

2)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于、兩點,求的面積之差的絕對值的最大值,并求取得最大值時直線的方程.為坐標原點)

查看答案和解析>>

同步練習冊答案