(本小題滿分12分)
在三棱柱中,側棱,點的中點,
(1)求證:∥平面;
(2)為棱的中點,試證明:

見解析。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題11分)如圖,在四棱錐中,平面,,,,.

(1)證明:平面 
(2)求和平面所成角的正弦值
(3)求二面角的正切值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)如圖,在平行六面體中,,,,的中點,設,,

(1)用表示;
(2)求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F(xiàn)分別是D1B,AD的中點,
(1)建立適當?shù)淖鴺讼,求出E點的坐標;
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形中(圖1),的中點,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)如圖,在直三棱柱中,,點的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

敘述并證明直線與平面垂直的判定定理.

查看答案和解析>>

同步練習冊答案