【題目】丑橘是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的丑橘,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:

產(chǎn)地

批發(fā)價格

150

160

140

155

170

市場份額

市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.

1)從該地批發(fā)市場銷售的丑橘中隨機抽取一箱,估計該箱丑橘價格低于160元的概率;

2)按市場份額進行分層抽樣,隨機抽取20箱丑橘進行檢驗,①從產(chǎn)地,共抽取箱,求的值;②從這箱中隨機抽取三箱進行等級檢驗,隨機變量表示來自產(chǎn)地的箱數(shù),求的分布列和數(shù)學(xué)期望.

3)產(chǎn)地的丑橘明年將進入該地市場,定價160/箱,并占有一定市場份額,原有五個產(chǎn)地的丑橘價格不變,所占市場份額之比不變(不考慮其他因素).設(shè)今年丑橘的平均批發(fā)價為每箱元,明年丑橘的平均批發(fā)價為每箱元,比較,的大小.(只需寫出結(jié)論)

【答案】1;(2)①5, ②分布列見解析,;(3.

【解析】

1)根據(jù)題設(shè)中的市場份額表可得所求的概率為.

2)對于①,根據(jù)所占份額可得,對于②,利用超幾何分布可求的分布列,根據(jù)公式可求其數(shù)學(xué)期望.

3)算出后可得.

1)根據(jù)市場份額表可知從該地批發(fā)市場銷售的丑橘中隨機抽取一箱,該箱丑橘價格低于160元的概率為.

2)①.

箱中產(chǎn)地的有2箱,故可取,

,,,

所以的分布列為:

.

3

,

其中五個產(chǎn)地的丑橘所占市場份額之比,

,故.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參?傎M用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形,, ,, ,

1)證明:平面;

2)求點到平面的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20141月至20171月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是(

A.月接待游客逐月增加

B.年接待游客量逐年減少

C.各年的月接待游客量高峰期大致在67

D.各年1月至6月的月接待游客量相對于7月至12月,波動性較小,變化比較穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有關(guān)獨立性檢驗的四個命題,其中正確的是(

A.兩個變量的2×2列聯(lián)表中,對角線上數(shù)據(jù)的乘積相差越大,說明兩個變量有關(guān)系成立的可能性就越大

B.對分類變量XY的隨機變量的觀測值k來說,k越小,XY有關(guān)系的可信程度越小

C.從獨立性檢驗可知:有95%的把握認為禿頂與患心臟病有關(guān),我們說某人禿頂,那么他有95%的可能患有心臟病

D.從獨立性檢驗可知:有99%的把握認為吸煙與患肺癌有關(guān),是指在犯錯誤的概率不超過1%的前提下認為吸煙與患肺癌有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近兩年來,以《中國詩詞大會》為代表的中國文化類電視節(jié)目帶動了一股中國文化熱潮.某臺舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯誤,立馬淘汰,若全部回答正確,就能獲得一枚復(fù)活幣并進行下一輪答題,兩輪都通過就可以獲得最終獎金.選手在第一輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會在下一輪答題中自動使用,即下一輪重新進行闖關(guān)答題時,在某一類題型中回答錯誤,自動復(fù)活一次,視為答對該類題型.若某選手每輪的4類題型的通過率均分別為、、,則該選手進入第二輪答題的概率為_________;該選手最終獲得獎金的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的有_________(填序號)

①已知,,則的必要不充分條件;

②“”是“函數(shù)的最小正周期為”的充分不必要條件;

中,內(nèi)角,所對的邊分別為,,,,則“”是“為等腰三角形”的必要不充分條件;

④若命題:“函數(shù)的值域為”為真命題,則實數(shù)的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)X~N(μ1),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

同步練習冊答案