【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學習積極性高

18

7

25

學習積極性不高

6

19

25

合計

24

26

50

如果隨機調(diào)查這個班的一名學生,求事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率;

若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取兩名學生參加某項活動,請用字母代表不同的學生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學生中恰有1名男生的概率.

【答案】(1) (2)見解析;(3)

【解析】

名學生中,不積極參加班級工作且學習積極性不高的學生有19人,由此能求出事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率

不積極參加班級工作且學習積極性高的7名學生中有兩名男生,設為A,B,另外五名女生設為a,b,c,d,e,現(xiàn)從中抽取兩名學生參加某項活動,能用字母代表不同的學生列舉出抽取的所有可能結(jié)果.

事件B:兩名學生中恰有1名男生,則事件B包含的基本事件有10種,由此能求出事件B:兩名學生中恰有1名男生的概率

名學生中,不積極參加班級工作且學習積極性不高的學生有19人,

事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率

不積極參加班級工作且學習積極性高的7名學生中有兩名男生,設為A,B,另外五名女生設為a,b,c,d,e,

現(xiàn)從中抽取兩名學生參加某項活動,

用字母代表不同的學生列舉出抽取的所有可能結(jié)果有21種,分別為:

AB,Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,ab,ac,ad,ae,bc,bd,be,cd,ce,de.

事件B:兩名學生中恰有1名男生,

則事件B包含的基本事件有10種,分別為:

Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,

事件B:兩名學生中恰有1名男生的概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,則f0+f1+f2+f3++f2019=( 。

A. 0B. 505C. 1010D. 2020

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把半橢圓與圓弧合成的曲線稱作曲圓,其中F為半橢圓的右焦點,A是圓弧x軸的交點,過點F的直線交曲圓P,Q兩點,則的周長取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點E(﹣4,0)和F4,0),過點E的直線l與過點F的直線m相交于點M,設直線l的斜率為k1,直線m的斜率為k2,如果k1k2

1)記點M形成的軌跡為曲線C,求曲線C的軌跡方程.

2)已知P2,m)、Q2,﹣m)(m0)是曲線C上的兩點,A,B是曲線C上位于直線PQ兩側(cè)的動點,當A,B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數(shù)學分數(shù)(滿分150分),每個班級20名同學,現(xiàn)有甲、乙兩位同學的20次成績?nèi)缦铝星o葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩位同學成績的中位數(shù),并將乙同學的成績的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較甲乙兩位同學數(shù)學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可)

(Ⅲ)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設事件為“其中2 個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球為球,求兩點在球上的球面距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面是等腰梯形,,,,,.

(Ⅰ)證明:平面平面;

(Ⅱ)點是棱上一點,且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學期的高一年級學生開始實行.為了適應新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在分及其以上的試卷中任取份分析學生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

同步練習冊答案