【題目】已知,,且對任意,都有:
①;②.
以下三個結(jié)論:①;②;③.
其中正確的個數(shù)為( ).
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:
該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1的方程為3x+4y﹣12=0.
(1)若直線l2與l1平行,且過點(diǎn)(﹣1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】;~塘是某地一種獨(dú)具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開發(fā)一個;~塘項目,該項目準(zhǔn)備購置一塊平方米的矩形地塊,中間挖成三個矩形池塘養(yǎng)魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹,池塘周圍的基圍寬均為米,如圖,設(shè)池塘所占總面積為平方米.
(Ⅰ)試用表示.
(Ⅱ)當(dāng)取何值時,才能使得最大?并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為, ,離心率為,且過點(diǎn).
()求橢圓的標(biāo)準(zhǔn)方程.
()、、、是橢圓上的四個不同的點(diǎn),兩條都不和軸垂直的直線和分別過點(diǎn), ,且這條直線互相垂直,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,
(2)當(dāng)時,關(guān)于的方程在[1,4]上恰有兩個不相等的實(shí)數(shù)根,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com