【題目】已知橢圓的兩個焦點分別為, ,離心率為,且過點

)求橢圓的標準方程.

、是橢圓上的四個不同的點,兩條都不和軸垂直的直線分別過點, ,且這條直線互相垂直,求證: 為定值.

【答案】)見解析

【解析】試題分析

(1)由離心率可得,故橢圓的方程為將點的坐標代入方程可得, 從而可得橢圓的方程。(2①當直線的斜率為0時, 為長軸長, 為通徑長;②當直線的斜率不為0時,設出直線的方程,運用橢圓的弦長公式可得,然后驗證即可得到結論。

試題解析:

,

橢圓的方程為,

又點在橢圓上

解得,

橢圓的方程為

(1)得橢圓的焦點坐標為,

①當直線的斜率為0時,則,

.

②當直線的斜率為0時,設其,

由直線互相垂直,可得直線

消去y整理得,

,

,

,

同理

綜上可得為定值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

就診人數(shù)(個)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;

(2)若選取的是1月與月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數(shù)據(jù)

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)已知點,設是橢圓上關于軸對稱的不同兩點,直線相交于點,求證:點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,且對任意,都有:

;②

以下三個結論:;②;③

其中正確的個數(shù)為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是__________

一個命題的逆命題為真,則它的逆否命題一定為真;

②“”是“”的充要條件;

③“,則, 全為” 的逆否命題是“若, 全不為,則

一個命題的否命題為真,則它的逆命題一定為真;

⑤“為假命題”是“為真命題”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)購已經(jīng)成為一種時尚,商家為了鼓勵消費,購買時在店鋪領取優(yōu)惠券,買后給予好評返還現(xiàn)金等促銷手段.經(jīng)統(tǒng)計,近五年某店鋪用于促銷的費用(萬元)與當年度該店鋪的銷售收人(萬元)的數(shù)據(jù)如下表:

年份

2013年

2014年

2015年

2016年

2017年

促銷費用

銷售收入

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出/span>關于的線性回歸方;

(2)2018年度該店鋪預測銷售收人至少達到萬元,則該店鋪至少準備投入多少萬元的促銷費?

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 兩個小島相距海里,島在島的正南方,現(xiàn)在甲船從島出發(fā),以海里/時的速度向島行駛,而乙船同時以海里/時的速度離開島向南偏東方向行駛,行駛多少時間后,兩船相距最近?并求出兩船的最近距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知任意角以坐標原點為頂點,軸的非負半軸為始邊,若終邊經(jīng)過點,且,定義:,稱“”為“正余弦函數(shù)”,對于“正余弦函數(shù)”,有同學得到以下性質:

①該函數(shù)的值域為; ②該函數(shù)的圖象關于原點對稱;

③該函數(shù)的圖象關于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為;

⑤該函數(shù)的遞增區(qū)間為.

其中正確的是__________.(填上所有正確性質的序號)

查看答案和解析>>

同步練習冊答案